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Chapter 7: Distributed Transactions

n Transaction concepts
n Centralized/Distributed Transaction Architecture

n Schedule concepts

n Locking schemes
n Deadlocks

n Distributed commit protocol ( 2PC )
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An Updating Transaction

Updating a master tape is fault tolerant: If a 
run fails for any reason, all the tape could be 
rewound and the job restarted with no harm 
done.
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Transaction concepts

n OS Processes ≅ DBMS Transactions
n A collection of actions that make consistent 

transformation of system states while preserving 
consistency

n Termination of transactions – commit vs abort

n Example: 
T : x = x + y

R(x)
Read(x)                                   W(x)        C
Read(y)                  R(y)
Write(x)
Commit
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Properties of Transactions: ACID

n Atomicity
− All or Nothing

n Consistency
− No violation of integrity constants, i.e., from one 

consistent state to another consistent state

n Isolation
− Concurrent changes invisible, i.e. serializable

n Durability
− Committed updates persist (saved in permanent storage)
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Transaction Processing Issues

n Transaction structure
− Flat vs Nested vs Distributed

n Internal database consistency
− Semantic data control and integrity enforcement

n Reliability protocols
− Atomicity and durability
− Local recovery protocols
− Global commit protocols

n Concurrency control algorithms

n Replica control protocols
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Basic Transaction Primitives

Write data to a file, a tableWRITE

Read data from a file, a tableREAD

Kill the transaction and restore the old 
valuesABORT_TRANSACTION

Terminate the transaction and try to 
commit

END_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive
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a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve BJ -> JFK;
reserve JFK -> TTY;
reserve TTY -> MON full  => 

ABORT_TRANSACTION

(b)

BEGIN_TRANSACTION
reserve BJ -> JFK;
reserve JFK -> TTY;
reserve TTY -> MON;

END_TRANSACTION

(a)

A Transaction Example
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Transaction execution
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Nested vs Distributed Transactions
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A circle (Si) denotes a server, and a
square (Tj) represents  a sub-transaction.

Flat/nested Distributed Transactions
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Distributed Transaction

n A distributed transaction accesses resource managers 
distributed across a network

n When resource managers are DBMSs we refer to the 
system as a distributed database system
− Each DBMS might export stored procedures or an 

SQL interface.  In either case, operations at a site are 
grouped together as a subtransaction and the site is 
referred to as a cohort of the distributed transaction

− Coordinator module plays major role in supporting 
ACID properties of distributed transaction
n Transaction manager acts as coordinator
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Distributed Transaction execution
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Distributed ACID

n Global Atomicity: All subtransactions of a 
distributed transaction must commit or all must 
abort.
− An atomic commit protocol, initiated by a coordinator (e.g., the 

transaction manager), ensures this.
− Coordinator must poll cohorts to determine if they are all willing 

to commit.

n Global deadlocks:  there must be no deadlocks 
involving multiple sites

n Global serialization: distributed transaction must 
be globally serializable
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Schedule

n Synchronizing concurrent transactions 
− Data base remains consistent
− Maximum degree of concurrency

n Transaction execute concurrently but the net effect 
of the resulting history is equivalent to some serial 
history

n Conflict equivalence
− The relative order of execution of the conflicting

operations belonging to unaborted transactions in the 
two schedules is same
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(B) 240B.write(B.balance + 40)

(B)  230B.write(B.balance + 30)

(B)  200B.balance ß B .read()

(B)  200B.balance ß B .read()

(C)  270C.write(C.balance – 30)

(C)  300C.balance ß C .read()

(A)  60A.write(A.balance – 40)

(A)  100A.balance ß A.read()

balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: withdraw(C , 30)
K: deposit(B , 30)

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 40) ;
K: deposit(B , 40) ;

END_TRANSACTION(T) ;

Lost Update Problem

Transaction T and U both work on the same bank branch K
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Transaction T and U both work on the same bank branch K

Inconsistent Retrieval Problem

….

(B)  300B.write(B.balance + 100)

(B)  200B.balance ß B .read()

300 + 200total_balance ß total_balance +  C.read()

100 + 200total_balance ß total_balance + B.read()

100total_balance ß A.read()

(A)  100A.write(A.balance – 100)

(A)  200A.balance ß A.read()

total_balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: Total_balance(A, B, C)
…

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 100) ;
K: deposit(B , 100) ;

END_TRANSACTION(T) ;
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(B)  270B.write(B.balance + 30)

(B)  240B.balance ß B .read()

(B)  240B.write(B.balance + 40)

(B)  200B.balance ß B .read()

(C)  270C.write(C.balance – 30)

(C)  300C.balance ß C .read()

(A)  60A.write(A.balance – 40)

(A)  100A.balance ß A.read()

balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: withdraw(C , 30)
K: deposit(B , 30)

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 40) ;
K: deposit(B , 40) ;

END_TRANSACTION(T) ;

Serial Equivalent

Transaction T and U both work on the same bank branch K
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Serializability

n a) – c) Three transactions T 1, T2, and T 3

n d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3;Schedule 3

Legalx = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3;Schedule 2

Legalx = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3Schedule 1

(d)
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Concurrency control Algorithms

n Pessimistic
− Two-Phase locking based(2PL)

n Centralized 2PL
n Distributed 2PL

− Timestamp Ordering (TO)
n Basic TO
n Multiversion TO
n Conservative TO

− Hybrid

n Optimistic
− Locking and TO based
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n A transaction locks an object before using it
n When an object is locked by another transaction, 

the requesting transaction must wait
n When a transaction releases a lock, it may not 

request another lock

n Strict 2 PL – hold lock till the end
n The scheduler first acquires all the locks it needs 

during the growing phase
n The scheduler releases locks during shrinking 

phase

Two-Phase Locking (1)
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Two-Phase Locking (2)
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Two-Phase Locking (3)

BEGIN_TRANSACTION(U)BEGIN_TRANSACTION(T)

END_TRANSACTION(U)

(B)  270B.write(B.balance + 30)

lock (B)  240…release (A) (B)END_TRANSACTION(T)

…(B)  240B.write(B.balance + 40)

Waiting for 
(B) ’s lock

B.balance ß B .read()

lock  (B)  200B.balance ß B .read()

(C)  270C.write(C.balance – 30)(A)  60A.write(A.balance – 40)

lock (C)  300C.balance ß C .read()lock (A)  100A.balance ß A.read()

balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: withdraw(C , 30)
K: deposit(B , 30)

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 40) ;
K: deposit(B , 40) ;

END_TRANSACTION(T) ;
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n Centralized 2PL
− One 2PL scheduler in the distributed system
− Lock requests are issued to the central scheduler

n Primary 2PL
− Each data item is assigned a primary copy, the lock manager on that 

copy is responsible for lock/release
− Like centralized 2PL, but locking has been distributed 

n Distributed 2PL
− 2PL schedulers are placed at each site and each scheduler handle s 

lock requests at that site
− A transaction may read any of the replicated copies by obtaininga 

read lock on one of the copies. Writing into x requires obtaining 
write lock on all the copies. 

Two-Phase Locking (4)
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Timestamp ordering (1)

n Transaction Ti is assigned a globally unique time stamp 
ts(Ti)

n Using Lamport’s algorithm, we can ensure that the 
timestamps are unique (important)

n Transaction manager attaches the timestamp to all the 
operations

n Each data item is assigned a write timestamp (wts) and a 
read timestamp (rts) such that:
− rts(x) = largest time stamp of any read on x
− wts(x) = largest time stamp of any write on x
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n Conflicting operations are resolved by timestamp order, let 
ts(Ti) be the timestamp of transaction Ti, and Ri(x), W i(x) 
be read/write operation from  Ti

for Ri(x):                                For W i(x)    
if (ts(Ti) < wts(x))                   if (ts(Ti) < wts(x) and

then reject Ri(x) (abort Ti) ts(Ti) < rts(x))        
else accept Ri(x)                      then reject W i(x) (abort Ti)

rts(x)  ← ts(Ti)                      else accept W i(x)
wts(x) ← ts(Ti)

Timestamp ordering (2)
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Distributed commit protocols

n How to execute commit for distributed transactions

n Issue: How to ensure atomicity and durability
n One-phase commit (1PC): the coordinator communicates 

with all servers to commit. Problem: a server can not abort 
a transaction.

n Two-phase commit (2PC): allow any server to abort its 
part of a transaction. Commonly used.

n Three-phase commit (3PC): avoid blocking servers in the 
presence of coordinator failure. Mostly referred in 
literature, not in practice.
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Two phase commit (2PC)

n Consider a distributed transaction involving the 
participation of a number of processes each running on a 
different machine, and assuming no failure occur

n Phase1: The coordinator gets the participants ready to write 
the results into the database 

n Phase2: Everybody writes the results into database
− Coordinator: The process at the site where the transaction originates 

and which controls the execution
− Participant: The process at the other sites that participate in 

executing the transaction

n Global commit rule:
− The coordinator aborts iffat least one participant votes to abort 
− The coordinator commits iff all the participants vote to commit
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2PC phases
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2PC actions
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Distributed 2PC

n The Coordinator initiates 2PC
n The participants run a distributed algorithm to 

reach the agreement of global commit or abort.
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Problems with 2PC

n Blocking
− Ready implies that the participant waits for the coordinator
− If coordinator fails, site is blocked until recovery
− Blocking reduces availability

n Independent recovery not possible
− Independent recovery protocols do not exist for multiple site 

failures
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Deadlocks

n If transactions follow 2PL, then it may have deadlocks

n Consider the following scenarios:
− w1(x) w2(y) r1(y) r2(x)
− r1(x) r2(x) w1(x) w2(x)

n Deadlock management
− Ignore – Let the application programmers handle it
− Prevention – no run time support
− Avoidance – run time support
− Detection and recovery – find it at your own leisure!!
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(a)  Simple circle (b)  Complex circle

n Mutual exclusion
n Hold and wait (a) TàUàVàWàT

n No preemption (b) VàWàTàV
n Circular chain VàWàV

Deadlock Conditions
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Deadlock Avoidance

n WAIT-DIE rule
− If (ts(Ti) < ts(Tj)) then T i waits else Ti dies
− Non preemptive – Ti never preempts Tj

− Prefers younger transactions

n WOUND-WAIT rule
− If (ts(Ti) < ts(Tj)) then Tj is wounded else Ti waits
− Preemptive – Ti preempts Tj if it is younger
− Prefers older transactions

Problem: very expensive, as deadlock is rarely and randomly 
occurred, forcing deadlock detection involves system 
overhead.
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Deadlock Detection

n Deadlock is a stable property.
• With distributed transaction, a deadlock might not 

be detectable at any one site

n But a deadlock still comes from cycles in a Wait for 
graph

n Topology for deadlock detection algorithms
− Centralized –periodically collecting waiting states
− Distributed –Path pushing
− Hierarchical – build a hierarchy of detectors
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