Chapter 7: Distributed Transactions

>

= Transaction concepts

= Centralized/Distributed Transaction Architecture
= Schedule concepts

= Locking schemes

= Deadlocks

= Distributed commit protocol (2PC)

Chapter 7 Distributed
Transactions

: An Updating Transaction

»

e mnam
=gy
hirw
reericry
[LISR AT [- - Oidpid bape
Torwy's
4 pduies

Updating amaster tapeisfault tolerant: If a
run fails for any reason, all the tape could be
rewound and the job restarted with no harm
done.

Chapter 7 Distributed
Transactions

3 Transaction concepts
= OS Processes @DBMS Transactions
= A collection of actions that make consistent
transformation of system states while preserving
consistency
= Termination of transactions— commit vs abort

= Example:
T:ixX=x+y

RO~
Read(x) _—TW(KX) »C
Read(y) R(y)
Write(x)
Commit

Chapter 7 Distributed
Transactions

;\ Properties of Transactions: ACID

= Atomicity
- All or Nothing

u Consistency

No violation of integrity constants, i.e., from one
consistent state to another consistent state

= |solation
- Concurrent changesinvisible, i.e. seridizable
u Durability

- Committed updates persist (saved in permanent storage)

Chapter 7 Distributed
Transactions

= Transaction structure
Flat vs Nested vs Distributed
= Internal database consistency
- Semantic datacontrol andintegrity enforcement
= Reliability protocols
- Atomicity and durability
Local recovery protocols
- Global commit protocols
= Concurrency control algorithms
= Replicacontrol protocols

Chapter 7 Distributed
Transactions

Basic Transaction Primitives

>

rimitive escription
BEGIN_TRANSACTTON YTake the start of a transaction

Terminate the transaction and try to

ND_TRANSACTION
o ommit

Hill the transaction and restore the old

Chapter 7 Distributed
Transactions

A Transaction Example

b —

BEGIN_TRANSACTION
reserve BJ -> JFK;
resrveJFK > TTY;
reserve TTY > MON;

END_TRANSACTION

BEGIN_TRANSACTION
reserve BJ -> JFK;
reserveJFK > TTY;,
reserve TTY -> MON full =>

ABORT_TRANSACTION

(a) (b)

s Transaction to reserve three flights commits
» Transaction aborts when third flight is unavailable

Chapter 7 Distributed
Transactions 7

Transaction execution

»

Centralized Transaction Execution

] St
= " T

Chapter 7 Distributed
Transactions 8

Nested vs Distributed Transactions

»

Flasled Pardsaches Dntricaded brarmscon

Buliansiion Babirensaction Sulfreiscton Sablnnseckon

— |
v ¥R = I e
b dalatiet) | Hotel detubase bl L1
Crvibuted databures
Tz difasand | e paars =il Tl Pt p o o]
databgses parin o e RETW clain boss

wl 1]

Chapter 7 Distributed
Transactions 9

Flat/nested Distributed Transactions

y

(@ Disibuses flt) Distibused resed

A circle (S) denotes aserver, and a
square (T;) represents a sub-transaction.

Chapter 7 Distributed
Transactions 10

Distributed Transaction

y

= A distributed transaction accesses resource managers
distributed across a network

= When resource managers are DBMSswerefer to the
system as a distributed database system

- Each DBMS might export stored procedures or an
SQL interface. In either case, operations at asite are
grouped together as a subtransaction and the siteis
referred to as acohort of the distributed transaction

- Coordinator module plays major role in supporting
ACID properties of distributed transaction

= Transaction manager acts as coordinator

Chapter 7 Distributed
Transactions 1

Distributed Transaction Execution

ST T
N

|
i

i JEE i

Chapter 7 Distributed
Transactions 12

= Global Atomicity: All subtransactions of a
distributed transaction must commit or all must
abort.

- An atomic commit protocol, initiated by acoordinator (e.g., the
transaction manager), ensuresthis.

- Coordinator must poll cohorts to determineif they areall willing
to commit.

= Global deadlocks: there must be no deadlocks
involving multiple sites

m Global serialization: distributed transaction must
be globally serializable

Chapter 7 Distributed
Transactions 13

Schedule

»

= Synchronizing concurrent transactions
- Database remains consistent
- Maximum degree of concurrency
= Transaction execute concurrently but the net effect
of the resulting history is equivalent to some serial
history
= Conflict equivalence
- Therelative order of execution of the conflicting
operations belonging to unaborted transactionsin the
two schedules is same

Chapter 7 Distributed
Transactions 14

Lost Update Problem

BEGIN_TRANSACTION(T) BEGIN_TRANSACTION(U)
K: withdran(A, 40); K: withdaw(C, 30
K: depost(B . 40): K: deposit(B 30
et B ORT o PRRSRCTOTOTT
,, P
bal o (A)100
io(Abal 405
balance& Csaad (C)-300.
4
8 halance £ B caad 8)200
B.bal 2 caad 2) 200
B uurite(B balance- 30) 8)230.
Bwiie(B balance + 40) TB) 240

Transaction T and U both work on the same bank branch K

Chapter 7 Distributed
Transactions 15

Inconsistent Retrieval Problem

-

GIN_TRANSACTION(T) * HEGIN_TRANSACTION(U)
withdran(A, 100) ; Total_balance(A, B,C)
- deposit Z
EfJD_TRANSACTION(T) | END_TRANSACTION(U) ;.
" bl " ealbal
Bk @ 0.
to(abal 200 200
ol bal sotalbal Boad 002 200
il ‘otalbal ol 004 20,
bal B soad 200
(B bal 20 200

Transaction T and U both work on the same bank branch K

Chapter 7 Distributed
Transactions 16

Seria Equivalent

BEGIN TRANSACTIOND ¢ BEGIN_TRANSACTION®) ¢
K: vithdran(A, 40); : withdaw(C, 30)
[N TRGroN - D TEANGACTIOND)
Operations balance Operations balance

A balance < A read() A) 100

A Write(A balance — 40) A) 60
Chaance < C.read() C) 300
C.write(C.balance — 30) (C) 270

B.balance < B read() B) 200

Bwrite(B balance + 40) B) 240
B.balance < B read() (B) 240
B.write(B.balance + 30) (B) 270

Transaction T and U both work on the same bank branch K

Chapter 7 Distributed
Transactions 17

Seridizability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION

x=0 x=0; x=0;

X=x+1 X=x+2 X=X+3

END_TRANSACTION END_TRANSACTION END_TRANSACTION

(a) (h) (o)
leﬁﬁel =0 X=X+1L X=0, X=Xx+2 X=0, X=Xx+3 Lga
hedule 2 =0, x=0; x=x+1 x=x+2 x=0, Xx=x+3; Ljegal
schedule 3 X=0, x=0, x=x+1 x=0; Xx=x+2 X=x+3 Illegal
(d)

= a) —C) ThreetransactionsT ,, T,, and T,
= d) Possible schedules

Chapter 7 Distributed
Transactions 18

:“ Concurrency control Algorithms

= Pessimistic
- Two-Phase locking based(2PL)
= Centralized 2PL
= Distributed 2PL
- TimestampOrdering(TO)
= Basic TO
= MultiversionTO
= Conservative TO
Hybrid
= Optimistic
Locking and TO based

Chapter 7 Distributed
Transactions 19

Two-Phase Locking (1)

= A transaction locks an object before using it

= When an object islocked by another transaction,
the requesting transaction must wait

= When atransaction releases alock, it may not
request another lock

= Strict 2 PL —hold lock till the end

= Thescheduler first acquires all thelocksit needs
during the growing phase

= The scheduler releases |ocks during shrinking
phase

Chapter 7 Distributed
Transactions 20

Two-Phase Locking (2)

Lok paint

G i phiad =T phasd
Cerwaing Bl o NG phasa

Hamzer of ok

Chapter 7 Distributed
Transactions 21

Two-Phase Locking (3)

eGIN_TRANSACTION(T : BEGIN_TRANSACTION() =
- withdran(a, 40 ; wilbdanC, %)
: depoci(e 4 ¢ : deoosi(e a0
B Comr ey St
P i
Ecin TRaNSACTIONT) Ecin TeaNsaCTIONGY
sal " beiiay 100 sl o hewicy 200
to(a bal 40, s 1o(C bal 20 0
g balance ¢ B read() aiting for
TF) sTock
1o(8 balances 40 y240
IO TRANSACTION(T, e e ey 200
y
ND=TRANSACTTONOY
Chapter 7 Distributed
Transactions 22

Two-Phase Locking (4)

= Centralized 2PL
- One 2PL scheduler in the distributed system
Lock requests are issued to the central scheduler
= Primary 2PL
Each dataitem is assigned a primary copy, the lock manager on that
copy is responsible for lock/release
Like centralized 2PL, but locking has been distributed
= Distributed 2PL
- 2PL schedulersare placed at each site and each scheduler handle s
lock requests at that site
- A transaction may read any of the replicated copies by obtaininga
read lock on one of the copies. Writing into x requires obtaining
writelock on al the copies.

Chapter 7 Distributed
Transactions 23

Timestamp ordering (1)

= Transaction T; is assigned aglobally unique time stamp
ts(T)

= Using Lamport’s algorithm, we can ensure that the
timestamps are unique (important)

= Transaction manager attaches the timestamp to all the
operations

= Eachdataitem isassigned awrite timestamp (wts) and a
read timestamp (rts) such that:

rts(x) = largest time stamp of any read on x
- wis(x) = largest time stamp of any write on x

Chapter 7 Distributed
Transactions 24

Timestamp ordering (2)

= Conflicting operations are resolved by timestamp order, |et
ts(T;) be the timestamp of transaction T;, and R;(x), W;(x)
be read/write operation from T;

for Ri(x): For W;(x)

if (ts(T;) < wts(x)) if (ts(T;) < wts(x) and

then reject R;(x) (abort T;) ts(T;) < rts(x))

else accept R;(x) then reject W;(x) (abort T;)
rts(x) = ts(T;) else accept W;(x)

wts(x) = ts(T;)

Chapter 7 Distributed
Transactions 25

Distributed commit protocols

How to execute commit for distributed transactions

Issue: How to ensure atomicity and durability

One-phase commit (1PC): the coordinator communicates
with all serversto commit. Problem: a server can not abort
atransaction.

Two-phase commit (2PC): allow any server to abort its
part of atransaction. Commonly used.

Three-phase commit (3PC): avoid blocking serversin the
presence of coordinator failure. Mostly referred in
literature, not in practice.

Chapter 7 Distributed

= Consider adistributed transaction involving the
participation of anumber of processes each running on a
different machine, and assuming no failure occur
= Phasel: The coordinator gets the participants ready to write
the resultsinto the database
= Phase2: Everybody writes the resultsinto database
- Coordinator: The process at the site where the transaction originates
and which controls the execution
- Participant: The process at the other sites that participatein
executing the transaction
= Global commit rule:
- Thecoordinator abortsiffat least one participant votes to abort
- The coordinator commitsiff al the participants vote to commit

Chapter 7 Distributed

Transactions 27

3 2PC actions

® @

= [R

=1 - i

L. ot — o f#

== | et

& & ==

- e

Chapter 7 Distributed
Transactions

29

Transactions 26
Centralized 2PC
-] a
B g8 g =
- | -
Chapter 7 Distributed
Transactions 28
Distributed 2PC
= The Coordinator initiates 2PC
= The participants run a distributed algorithm to
reach the agreement of global commit or abort.
Chapter 7 Distributed
30

Transactions

Problems with 2PC

= Blocking
- Ready impliesthat the participant waits for the coordinator
If coordinator fails, siteis blocked until recovery
- Blocking reduces availability
= Independent recovery not possible

- Independent recovery protocols do not exist for multiple site
failures

Chapter 7 Distributed
Transactions 31

Deadlocks

= |f transactions follow 2PL, then it may have deadlocks
= Consider the following scenarios:

- wi(x) w2(y) ri(y) r2(x)

- rd(x) r2(x) wi(x) w2(x)
= Deadlock management

- Ignore — Let the application programmers handle it

- Prevention— no run time support

- Avoidance —run time support

- Detection and recovery —find it at your own leisure!!

Chapter 7 Distributed
Transactions 32

Deadlock Conditions

r

>

(8) Smplecircle (b) Complexcirde

= Mutual exclusion

= Hold and wait @T2U>VoW-ST
= Nopreemption (b)VoOW>T>V

= Circular chain VoOW->V

Chapter 7 Distributed
Transactions 33

Deadlock Avoidance

= WAIT-DIErule
- I (tgT) <t(T)) then T, waits else T, dies
- Non preemptive— T; never preempts T
- Prefersyounger transactions
= WOUND-WAIT rule
- I (tgT) <t(T)) thenT; iswounded else T, waits
- Preemptive — T, preemptsT; if it is younger
- Prefgrs older transactions

Problem: very expensive, as deadlock israrely and randomly
occurred, forcing deadlock detection involves system
overhead.

Chapter 7 Distributed
Transactions 34

Deadlock Detection

= Deadlock isastable property.
* With distributed transaction, a deadlock might not
be detectable at any one site
= Butadeadlock still comesfrom cyclesin aWait for
graph
= Topology for deadlock detection algorithms
- Centralized —periodically collecting waiting states
- Distributed —Path pushing
- Hierarchical — build ahierarchy of detectors

Chapter 7 Distributed
Transactions 35

Centralized — periodically collecting waiting states

;“._ —

lock

s u? v
S, V? W
S;: W? U

Chapter 7 Distributed
Transactions 36

