
1

Chapter 7 Distributed
Transactions 1

Chapter 7: Distributed Transactions

n Transaction concepts
n Centralized/Distributed Transaction Architecture

n Schedule concepts

n Locking schemes
n Deadlocks

n Distributed commit protocol (2PC)

Chapter 7 Distributed
Transactions 2

An Updating Transaction

Updating a master tape is fault tolerant: If a
run fails for any reason, all the tape could be
rewound and the job restarted with no harm
done.

Chapter 7 Distributed
Transactions 3

Transaction concepts

n OS Processes ≅ DBMS Transactions
n A collection of actions that make consistent

transformation of system states while preserving
consistency

n Termination of transactions – commit vs abort

n Example:
T : x = x + y

R(x)
Read(x) W(x) C
Read(y) R(y)
Write(x)
Commit

Chapter 7 Distributed
Transactions 4

Properties of Transactions: ACID

n Atomicity
− All or Nothing

n Consistency
− No violation of integrity constants, i.e., from one

consistent state to another consistent state

n Isolation
− Concurrent changes invisible, i.e. serializable

n Durability
− Committed updates persist (saved in permanent storage)

Chapter 7 Distributed
Transactions 5

Transaction Processing Issues

n Transaction structure
− Flat vs Nested vs Distributed

n Internal database consistency
− Semantic data control and integrity enforcement

n Reliability protocols
− Atomicity and durability
− Local recovery protocols
− Global commit protocols

n Concurrency control algorithms

n Replica control protocols

Chapter 7 Distributed
Transactions 6

Basic Transaction Primitives

Write data to a file, a tableWRITE

Read data from a file, a tableREAD

Kill the transaction and restore the old
valuesABORT_TRANSACTION

Terminate the transaction and try to
commit

END_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

2

Chapter 7 Distributed
Transactions 7

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve BJ -> JFK;
reserve JFK -> TTY;
reserve TTY -> MON full =>

ABORT_TRANSACTION

(b)

BEGIN_TRANSACTION
reserve BJ -> JFK;
reserve JFK -> TTY;
reserve TTY -> MON;

END_TRANSACTION

(a)

A Transaction Example

Chapter 7 Distributed
Transactions 8

Transaction execution

Chapter 7 Distributed
Transactions 9

Nested vs Distributed Transactions

Chapter 7 Distributed
Transactions 10

T

S1

T22

T21

T12

T11

T2

T1

T

S3

S2

S2

S6

S5

S4

S1

S3

(a) Distributed flat (b) Distributed nested

S7

S0

A circle (Si) denotes a server, and a
square (Tj) represents a sub-transaction.

Flat/nested Distributed Transactions

Chapter 7 Distributed
Transactions 11

Distributed Transaction

n A distributed transaction accesses resource managers
distributed across a network

n When resource managers are DBMSs we refer to the
system as a distributed database system
− Each DBMS might export stored procedures or an

SQL interface. In either case, operations at a site are
grouped together as a subtransaction and the site is
referred to as a cohort of the distributed transaction

− Coordinator module plays major role in supporting
ACID properties of distributed transaction
n Transaction manager acts as coordinator

Chapter 7 Distributed
Transactions 12

Distributed Transaction execution

3

Chapter 7 Distributed
Transactions 13

Distributed ACID

n Global Atomicity: All subtransactions of a
distributed transaction must commit or all must
abort.
− An atomic commit protocol, initiated by a coordinator (e.g., the

transaction manager), ensures this.
− Coordinator must poll cohorts to determine if they are all willing

to commit.

n Global deadlocks: there must be no deadlocks
involving multiple sites

n Global serialization: distributed transaction must
be globally serializable

Chapter 7 Distributed
Transactions 14

Schedule

n Synchronizing concurrent transactions
− Data base remains consistent
− Maximum degree of concurrency

n Transaction execute concurrently but the net effect
of the resulting history is equivalent to some serial
history

n Conflict equivalence
− The relative order of execution of the conflicting

operations belonging to unaborted transactions in the
two schedules is same

Chapter 7 Distributed
Transactions 15

(B) 240B.write(B.balance + 40)

(B) 230B.write(B.balance + 30)

(B) 200B.balance ß B .read()

(B) 200B.balance ß B .read()

(C) 270C.write(C.balance – 30)

(C) 300C.balance ß C .read()

(A) 60A.write(A.balance – 40)

(A) 100A.balance ß A.read()

balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: withdraw(C , 30)
K: deposit(B , 30)

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 40) ;
K: deposit(B , 40) ;

END_TRANSACTION(T) ;

Lost Update Problem

Transaction T and U both work on the same bank branch K

Chapter 7 Distributed
Transactions 16

Transaction T and U both work on the same bank branch K

Inconsistent Retrieval Problem

….

(B) 300B.write(B.balance + 100)

(B) 200B.balance ß B .read()

300 + 200total_balance ß total_balance + C.read()

100 + 200total_balance ß total_balance + B.read()

100total_balance ß A.read()

(A) 100A.write(A.balance – 100)

(A) 200A.balance ß A.read()

total_balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: Total_balance(A, B, C)
…

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 100) ;
K: deposit(B , 100) ;

END_TRANSACTION(T) ;

Chapter 7 Distributed
Transactions 17

(B) 270B.write(B.balance + 30)

(B) 240B.balance ß B .read()

(B) 240B.write(B.balance + 40)

(B) 200B.balance ß B .read()

(C) 270C.write(C.balance – 30)

(C) 300C.balance ß C .read()

(A) 60A.write(A.balance – 40)

(A) 100A.balance ß A.read()

balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: withdraw(C , 30)
K: deposit(B , 30)

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 40) ;
K: deposit(B , 40) ;

END_TRANSACTION(T) ;

Serial Equivalent

Transaction T and U both work on the same bank branch K

Chapter 7 Distributed
Transactions 18

Serializability

n a) – c) Three transactions T 1, T2, and T 3

n d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

4

Chapter 7 Distributed
Transactions 19

Concurrency control Algorithms

n Pessimistic
− Two-Phase locking based(2PL)

n Centralized 2PL
n Distributed 2PL

− Timestamp Ordering (TO)
n Basic TO
n Multiversion TO
n Conservative TO

− Hybrid

n Optimistic
− Locking and TO based

Chapter 7 Distributed
Transactions 20

n A transaction locks an object before using it
n When an object is locked by another transaction,

the requesting transaction must wait
n When a transaction releases a lock, it may not

request another lock

n Strict 2 PL – hold lock till the end
n The scheduler first acquires all the locks it needs

during the growing phase
n The scheduler releases locks during shrinking

phase

Two-Phase Locking (1)

Chapter 7 Distributed
Transactions 21

Two-Phase Locking (2)

Chapter 7 Distributed
Transactions 22

Two-Phase Locking (3)

BEGIN_TRANSACTION(U)BEGIN_TRANSACTION(T)

END_TRANSACTION(U)

(B) 270B.write(B.balance + 30)

lock (B) 240…release (A) (B)END_TRANSACTION(T)

…(B) 240B.write(B.balance + 40)

Waiting for
(B) ’s lock

B.balance ß B .read()

lock (B) 200B.balance ß B .read()

(C) 270C.write(C.balance – 30)(A) 60A.write(A.balance – 40)

lock (C) 300C.balance ß C .read()lock (A) 100A.balance ß A.read()

balanceOperationsbalanceOperations

BEGIN_TRANSACTION(U) :
K: withdraw(C , 30)
K: deposit(B , 30)

END_TRANSACTION(U) ;

BEGIN_TRANSACTION(T) :
K: withdraw(A, 40) ;
K: deposit(B , 40) ;

END_TRANSACTION(T) ;

Chapter 7 Distributed
Transactions 23

n Centralized 2PL
− One 2PL scheduler in the distributed system
− Lock requests are issued to the central scheduler

n Primary 2PL
− Each data item is assigned a primary copy, the lock manager on that

copy is responsible for lock/release
− Like centralized 2PL, but locking has been distributed

n Distributed 2PL
− 2PL schedulers are placed at each site and each scheduler handle s

lock requests at that site
− A transaction may read any of the replicated copies by obtaininga

read lock on one of the copies. Writing into x requires obtaining
write lock on all the copies.

Two-Phase Locking (4)

Chapter 7 Distributed
Transactions 24

Timestamp ordering (1)

n Transaction Ti is assigned a globally unique time stamp
ts(Ti)

n Using Lamport’s algorithm, we can ensure that the
timestamps are unique (important)

n Transaction manager attaches the timestamp to all the
operations

n Each data item is assigned a write timestamp (wts) and a
read timestamp (rts) such that:
− rts(x) = largest time stamp of any read on x
− wts(x) = largest time stamp of any write on x

5

Chapter 7 Distributed
Transactions 25

n Conflicting operations are resolved by timestamp order, let
ts(Ti) be the timestamp of transaction Ti, and Ri(x), W i(x)
be read/write operation from Ti

for Ri(x): For W i(x)
if (ts(Ti) < wts(x)) if (ts(Ti) < wts(x) and

then reject Ri(x) (abort Ti) ts(Ti) < rts(x))
else accept Ri(x) then reject W i(x) (abort Ti)

rts(x) ← ts(Ti) else accept W i(x)
wts(x) ← ts(Ti)

Timestamp ordering (2)

Chapter 7 Distributed
Transactions 26

Distributed commit protocols

n How to execute commit for distributed transactions

n Issue: How to ensure atomicity and durability
n One-phase commit (1PC): the coordinator communicates

with all servers to commit. Problem: a server can not abort
a transaction.

n Two-phase commit (2PC): allow any server to abort its
part of a transaction. Commonly used.

n Three-phase commit (3PC): avoid blocking servers in the
presence of coordinator failure. Mostly referred in
literature, not in practice.

Chapter 7 Distributed
Transactions 27

Two phase commit (2PC)

n Consider a distributed transaction involving the
participation of a number of processes each running on a
different machine, and assuming no failure occur

n Phase1: The coordinator gets the participants ready to write
the results into the database

n Phase2: Everybody writes the results into database
− Coordinator: The process at the site where the transaction originates

and which controls the execution
− Participant: The process at the other sites that participate in

executing the transaction

n Global commit rule:
− The coordinator aborts iffat least one participant votes to abort
− The coordinator commits iff all the participants vote to commit

Chapter 7 Distributed
Transactions 28

2PC phases

Chapter 7 Distributed
Transactions 29

2PC actions

Chapter 7 Distributed
Transactions 30

Distributed 2PC

n The Coordinator initiates 2PC
n The participants run a distributed algorithm to

reach the agreement of global commit or abort.

6

Chapter 7 Distributed
Transactions 31

Problems with 2PC

n Blocking
− Ready implies that the participant waits for the coordinator
− If coordinator fails, site is blocked until recovery
− Blocking reduces availability

n Independent recovery not possible
− Independent recovery protocols do not exist for multiple site

failures

Chapter 7 Distributed
Transactions 32

Deadlocks

n If transactions follow 2PL, then it may have deadlocks

n Consider the following scenarios:
− w1(x) w2(y) r1(y) r2(x)
− r1(x) r2(x) w1(x) w2(x)

n Deadlock management
− Ignore – Let the application programmers handle it
− Prevention – no run time support
− Avoidance – run time support
− Detection and recovery – find it at your own leisure!!

Chapter 7 Distributed
Transactions 33

T

U V

W

W
U

T

V

(a) Simple circle (b) Complex circle

n Mutual exclusion
n Hold and wait (a) TàUàVàWàT

n No preemption (b) VàWàTàV
n Circular chain VàWàV

Deadlock Conditions

Chapter 7 Distributed
Transactions 34

Deadlock Avoidance

n WAIT-DIE rule
− If (ts(Ti) < ts(Tj)) then T i waits else Ti dies
− Non preemptive – Ti never preempts Tj

− Prefers younger transactions

n WOUND-WAIT rule
− If (ts(Ti) < ts(Tj)) then Tj is wounded else Ti waits
− Preemptive – Ti preempts Tj if it is younger
− Prefers older transactions

Problem: very expensive, as deadlock is rarely and randomly
occurred, forcing deadlock detection involves system
overhead.

Chapter 7 Distributed
Transactions 35

Deadlock Detection

n Deadlock is a stable property.
• With distributed transaction, a deadlock might not

be detectable at any one site

n But a deadlock still comes from cycles in a Wait for
graph

n Topology for deadlock detection algorithms
− Centralized –periodically collecting waiting states
− Distributed –Path pushing
− Hierarchical – build a hierarchy of detectors

Chapter 7 Distributed
Transactions 36

S1

A

S2

S3

D C

B

V

W

U

wait

lock

lock

lock

lock

wait

wait

S1 : U? V

S2 : V? W
S3 : W? U

Centralized – periodically collecting waiting states

