Chapter 9: Fault Tolerance

= Fault ToleranceBasics, Hardwar eand Softwar e Faults
= FailureModelsin Distributed Systems
= Hardware Reliability Modeling
= Fault Tolerancein Digtributed Systems
= Static Redundancy: reliability models, TMR
= Agreement in Faulty Systems:

Byzantine Generalsproblem
= Fault Tolerant Services
= Reliable Client-Server Communication
= Reliable Group Communication
= Recovery

- Check-pointing
Message L ogging

Chapter 9 Fault Tolerance

Concepts of Fault Tolerance

o Hardware, software and networks cannot be totally free
from failures

o Fault tolerance is a non-functional (QoS) requirement
that requires a system to continue to operate, even in the
presence of faults

o Fault tolerance should be achieved with minimal
involvement of users or system administrators

u Distributed systems can be more fault tolerant than
centralized systems, but with more processor hosts
generally the occurrence of individual faults is likely to be
more frequent

a Notion of a partial failure in a distributed system

Chapter 9 Fault Tolerance

Attributes, Consequences and Strategies

What is a

Attributes
« Availability
* Reliability
« Safety
« Confidentiality
« Integrity
« Maintainability Consequences
« Fault
« Error i
« Failure Strategies

« Fault prevention
« Fault tolerance
« Fault recovery

« Fault forcasting

Chapter 9 Fault Tolerance

Attributes of a Dependable System

o System attributes:
- Availability— system always ready for use, or probability
that system isready or available at agiventime
- Reliability— property that a system can run without
failure, for agiven time
E Sfaf_(lety— indicates the safety issuesin the case the system
ails

- Maintainability — refers to the ease of repair to afailed
system

o Failurein adistributed system = when a service cannot
be fully provided

o System failure may be partial

o A singlefailure may affect other parts of asystem
(failure escalation)

Chapter 9 Fault Tolerance

Terminology of Fault Tolerance

Eault L Eerrar >
causes results in

Fault — isadefect within the system

Error —isobserved by adeviation from the expected
behaviour of the system

Failure occurs when the system can no longer perform as
required (does not meet spec)

Fault Tolerance—is ability of system to provide aservice,
even in the presence of errors

Chapter 9 Fault Tolerance

Types of Fault (wrt time)

Hard or Permanent — repeatable error, e.g. failed
component, power fail, fire, flood, design error (usually
software), sabotage

Soft Fault
Transient — occurs once or seldom, often due to

unstable environment (e.g. bird flies past microwave
transmitter)

I nter mittent — occurs randomly, but where factors
influencing fault are not clearly identified, e.g. unstable
component

Operator error —human error

Chapter 9 Fault Tolerance

Typesof Fault (wrt attributes)

Type of failure Description
Crash failure A server halts, but is working correctly until it halts

Amnesia crash Lost all history, must be reboot

Pause crash Still remember state before crash, can be recovered

Halting crash Hardware failure _must be replaced or reinstalled
Omission failure A server fails to respond to incoming requests

Receive omission A server fails to receive incoming messages

Send omission A server fails to send messages
Timing failure A server's response lies outside the specified time interval
Response failure The server's response is incorrect

Value failure The value of the response is wrong

State transition failure The server deviates from the correct flow of control
Arbitrary failure A server may produce arbitrary responses at arbitrary

times
Chapter 9 Fault Tolerance 7

Strategiesto Handle Faults

= Fault avoidance
- Techniques aim toprevent faulté
from entering the system during
design stage
= Fault removal 4
- Methods attempt to find faults
within asystem beforeit enters
service
= Fault detection
Techniques used during serviceto
detect faults within the operational
system LA
= Fault tolerant . f
- Techniques designed to tolerant
faults, i.e. to allow the system
operate correctly in the presence of
faults.

Chapter 9 Fault Tolerance 8

| Architectural approaches
Simplex systems
® highly reliable components
Dual Systems
® twin identical
e twin dissimilar
« control + monitor
N-way Redundant
systems
® identical / dissimilar
« self-checking / voting

Chapter 9 Fault Tolerance 9

Example: RAID
| (Redundant Array of | ndependent Disks)

L L

" TTITIT

r— —
49490 aE8
RAID hasbeen classified into several levels: 0, 1, 2, 3,4, 5,6, 10,
50, each level provides a different degree of fault tolerance

Chapter 9 Fault Tolerance 10

Failure Masking by TMR

L] " c
olar
>
Al 1W1 = W (=3} N7
A —s—t B i] A
& L] (-1 e o | =]
L]

@ Origina circuit
v Triple modular redundancy

Chapter 9 Fault Tolerance 11

Example: Space Shuttle

= Uses5identical computerswhich can be assigned to redundant operation

under program control.

During critical mission phases- boog, re-entry and loading - 4 of its5

computers operate an NMR configuration, receiving the same inputsand

executing identical tasks. When afailureis detected the computer

concerned is switched out of the system leaving a TMR arrangement.

The fifth computer is used to perform non-critical tasks in asimplex

mode, however, under extreme cases may take over critical functions The

unit has "diverse" software and could be used if a systematic fault was

discovered in the other four computers.

= Theshuttle cantolerate up to two computer failures; after ase cond failure
it operates as aduplex system and uses comparison and self -test
techniques to surviveathird fault.

Chapter 9 Fault Tolerance 12

Forms of redundancy

= Hardware redundancy
- Usemore hardware
= Software redundancy
- Usemore software
= Information redundancy, e.g.
- Parity bits
- Error detecting or correcting codes
- Checksums
= Temporal (time) redundancy
- Repeating calculations and comparing results
- For detecting transient faults

Chapter 9 Fault Tolerance 13

Softwar e Faults

Q Program code (may) containsbugsif actual behavior disagreeswith
theintended specification. These faults may occur from:

= specification error

= design error

= coding error, e.g. use on un-initialized variables

= integration error

= runtimeerror e.g. operating system stack overflow, divide by zero
Q Software failure is (usually) deterministic, i.e. predictable, based on
the state of the system. Thereisno random element to the failure—
unless the system state cannot be specified precisely. A non-
deterministic fault behavior usually indicates that the relevant system
state parameter s have not been identified.

Q Fault coverage — defines the fraction of possible faults that can be
detected by testing (statement, condition or structural analysis)

Chapter 9 Fault Tolerance 14

Softwar e Fault Tolerance

N-version programming
= Useseveral different implementations of the same specification
= The versions may runsequentially on one processor or in
parallel on different processors.
= They usethe sameinput and their results are compared.
- In the absence of a disagreement, the result is output.
- When produced different results:
= |f thereare2routines
theroutines may be repeated in case thiswas atransient error;
to decide which routineisin error.
= |f thereare 3 or more routines,
voting may be applied to mask the effects of the fault.

Chapter 9 Fault Tolerance 15

Process Groups

o Organize several identical processesinto agroup

o When amessageis send to agroup, all members of the
group receivesit

o If one processin agroup fails (no matter what reason),
hopefully some other process can take over for it

a The purpose of introducing groupsis to allow processes
to deal with collections of processesasasingle
abstraction.

o Important design issue is how to reach agreement within a
process group when one or more of its members cannot be
trusted to give correct answers.

Chapter 9 Fault Tolerance 16

Process Group Architectures

oy Hemreey puap sl

- wan

s Communicationin aflat group.
» Communication in asimple hierarchical group

Chapter 9 Fault Tolerance 17

Fault Tolerant in Process Group

o A systemissaid to bek fault tolerant if it can survive
faults ink components and still meetsits specification.

a If the components (processes) fail silently, then having k +
1 of them is enough to provide k fault tolerant.

a If processes exhibit Byzantine failures (continuing to run
when sick and sending out erroneous or random replies, a
minimum 2k + 1 processes are needed.

a If we demand that a process group reaches an agreement,
such as electing a coordinator, synchronization, etc., we
need even more processes to tolerate faults.

Chapter 9 Fault Tolerance 18

Distributed Agreement

= A Distributed Agreement is a process to reach an
agreement among non-faulty processes within finite steps.
= Suppose that n processes, P = {p

e P1, By oos P}, try to
establish an agreement. let pl P has an initial value V;?
If the set F contains all the faulty processes, then

(P —F) is the set of non-faulty processes?

= The goal of a distributed agreement algorithm is to let
every process p; of P to calculate an agreement value A,
such that the following conditions hold:

= (Dletp;, p; (i*j; i, j=1..n) be arbitrary processes,
it p;,pl (P =F), then A; = A, and we call this value as
an agreement value.

= (2) An agreement value of (P —F) if the function of {V;}.

Chapter 9 Fault Tolerance 19

Byzantine Generals Problem

N armies were called to meet the invading enemy. Each of
the armies was led by its own general.Each general had his
own preference about whether to attack. Since the attacks
had to be coordinated, the generals sent messengers to
each other.

The disloyal generals would attempt to deceive the loyal
generals to prevent a coordinated attack. The loyal
generals therefore agreed to follow a protocol that ensure
a distributed agreement.

Each general p; will transmit its opinion V; to others
subject to the following interactive consistency
conditions:

(1) if sender p; is loyal,the loyal generals will agree V;
(2) if the sender p; a traitor, the loyal generals will agree
on the same value for V.

Chapter 9 Fault Tolerance 20

Three Generals

<
retreat retreat

(1) commander disloyal (2) GB disloyal

Since the generals can come to agreement if each can reliably
broadcast its opinion, we will focus on a single broadcast, and
let the sender be the commander general. To solve the Byzantine
generals problem, each general takes his turn as commander.

G A can't follow Cs order, because if C is disloyal, A and B
would obey different orders; G A can't disobey the order either,
because C might be loyal. There, G A can not make a decision.

Chapter 9 Fault Tolerance 21

Four Generals

retreat retreat
(1) commender disloyal (2) Generdl Cdiloyal

Suppose there are four generals where one is disloyal. The
conmander broadcasts his order to each general. Next, each
general tells the other two the order he received from C.
The general then obeys the majority opinion.

Suppose that there are t traitors among M generals, then we
can prove: if M <= 3t, the system can not reach agreement.

Chapter 9 Fault Tolerance 22

Reliable Communication

o Fault Tolerancein Distributed system must consider
communication failures.

o A communication channel may exhibit crash, omission,
timing, and arbitrary failures.

o Reliable P2P communication is established by areliable
transport protocol, such as TCP.

a Inclient/server model, RPC/RM| semantics must be
satisfied in the presence of failures.

o In process group architecture or distributed replication
systems, a reliable multicast/broadcast serviceisvery
important.

Chapter 9 Fault Tolerance 23

Reliable Client-Server Communication

In the case of process failure the following situations need
to be dealt with:

» Client unable to locate server

» Client request to server islost

~ Server crash after receivingclient request
» Server reply toclient islost

»~ Client crash after sending server request

Chapter 9 Fault Tolerance 24

L ost Request M essages when Server Crashes

REG D - —T
LT * Racews * Recase
o | Emm - g | R
i S gty 2 e H
(L1} {14 =

A server in client-server communication
s Normal case

» Crash after execution

9 Crash before execution

Chapter 9 Fault Tolerance 25

Solutionsto Handle Server Failures (1)

> Client unableto locate server ,e.g. server down, or server has
changed
Solution:

- Usean exception handler — but thisis not always possiblein
the programming language used

» Client request to server islost
Solution:

- Useatimeout to await server reply, then re-send — but be
careful about idempotent operations (no side effects when re-send)

- If multiple requests appear to get lost assume ‘cannot locate
server’ error

Chapter 9 Fault Tolerance 26

Solutionsto Handle Server Failures (2)

» Server crash after receiving client request
Problem may be not being ableto tell if request was carried out (e.g.
client requests print page, server may stop before or after printing, before
acknowledgement)
Solutions:

- rebuild server and retry client request (assuming ‘at least once’
semanticsfor request)

- give up and report request failure (assuming ‘at most once’
semantics), what is usually required is exactly once semantics, but this
difficult to guarantee

» Server reply toclient islost
Client can simply set timer and if no reply in time assume serve down,
request lost or server crashed during processing request.

Chapter 9 Fault Tolerance 27

Solutionsto Handle Client Failures

» Client crash after sending server request : Server unableto reply to
client (orphan request)

Optionsand I ssues

- Extermination: client makesalog of each RPC, and kills
orphan after reboot. Expensive.

- Reincarnation. Time divided into epochs (large intervals).
When client restartsit broadcaststo all, and starts anew time epoch.
Serversdealing with client requests from a previous epoch can ke
terminated. Also unreachable servers (e.g. in different network areas)
may later reply, but will refer to obsolete epoch numbers.

- Gentlereincarnation, as above but an attempt ismade to
contact the client owner (e.g. who may be logged out) to take action
Expiration, server timesout if client cannot be reached to retum reply

Chapter 9 Fault Tolerance 28

Group Communication

Address:
Expansion

Membership
Management

\/

Multicast
Comm

Static Groups: group membership is pre defined
Dynamic Groups: Members may join and leave, as necessary
ember = Process (or coordinator or eplicaManager

Chapter 9 Fault Tolerance 29

Basic Reliable-Multicasting

A simple solution to reliable multicasting when all receivers
areknown and are assumed not to fail

) Message transmission

n Reporting feedback

Chapter 9 Fault Tolerance 30

Hierarchical Feedback Control

e o

The essence of hierarchical reliable multicasting (best for large
Process groups.

) Each local coordinator forwards the message to its children.

n Alocal coordinator handles retransmission requests.

Chapter 9 Fault Tolerance 31

Group View (1)

b* A group membership servicemaintains group views, which are
lists of current group members.
<+ ThisisNOT alist maintained by aone member, but...
<% Each member maintainsits own view (thus, views may be
different across members)
b A viewV,(g) is process p's understanding of its group (list of
members)
* Example:V po(@) = {p}, Vpa(@) = {p, @}, V 52 (9) = {p. 0, 1},
Vs () = {pr}
b+ A new group view is generated, throughout the group, whenever a
member joins or leaves.
+ Member detecting failure of another member reliable
multicasts a“ view change” message (causattotal order)

Chapter 9 Fault Tolerance 32

Group View (2)

“* Aneventissaidto occurinaview v, (g) if the event occurs at p, and at
the time of event occurrence, p has delivered v, (g) but has not yet
deliveredv;,,(9).

+* Messages sent out in aview i need to be delivered in that view at all
membersin the group (“What happensin the View, staysin the View")

% Requirements for view delivery

«¢ Order: If p deliversvi(g) and thenvi.1(g), then no other processq
deliversvi.i(g) before v(g).

< Integrity: If p delivers vi(g), then p isin vi(g).

+* Non-triviality: if process q joins agroup and becomes reachable
from process p, then eventually g will always be present in the views
that delivered at p.

Chapter 9 Fault Tolerance 33

Virtual Synchronous Communication (1)

b Virtual Synchronous Communication = Reliable multicast + Group
Membership
The following guarantees are provided for multicast messages:

< Integrity : If p deliversmessagem, p does not deliver magain. Alsop
I group (m).

« Vadlidity : Correct processes aways deliver all messages. That is, if p
delivers message m in viewv(g) , and some process g v(g) does not
deliver min viewv(g), then the next view v’ (g) delivered at p will
exclude q.

«* Agreement: Correct processes deliver the same set of messagesin
any view.

«+ All View Delivery conditions (Order, Integrity and Non-triviaity
conditions, from last slide) are satisfied

te “\What happensinthe View staysinthe \View!

ol

Chapter 9 Fault Tolerance 34

Virtual Synchronous Communication (2)

U — ———Alowad —
I
o N
q —
' g : O
V(P
(P A} V(p.a.r) vian
Not Allowed Not Allowed
P E_ P
qa — q g_
' > > r » >
Yoan V(p.a.n)
) cu)

Chapter 9 Fault Tolerance 35

Virtual Synchronous Communication (3)

" . o Total-ordered
Haste retering eivery?

Reliable multicast one o

TFO multicast FO-ordered delivery o

ausal multicast ausal-ordered deivery Nio

tomic multicast one es
HIFO atomic e e
Furticast HHS-erterectdetivery €S

ausal atomic A L e LT
multicast i

Six different versions of virtually synchronousreliable multicasting

Chapter 9 Fault Tolerance 36

Recovery Techniques

= Once failure has occurred in many casesit isimportant to
recover critical processesto aknown statein order to
resume processing

= Problem iscompounded in distributed systems
Two Approaches:

= Backward recovery, by use of checkpointing (global
snapshot of distributed system status) to record the system
state but checkpointing is costly (performance degradation)

= Forward recovery, attempt to bring system to a new stable
state from which it is possible to proceed (applied in
situations where the nature if errorsis known and areset can
be applied)

Chapter 9 Fault Tolerance 37

Checkpointing

vl alale Fece ey B chpont
oy '8 Y
al it
Fadure
* ¥
m L B LB L PR
Tire —
Weusnge sart Incnnaisisng cuf

Pare P2 m Fi

A recovery lineisadistributed snapshot which
records a consistent global state of the system

Chapter 9 Fault Tolerance

38

Independent Checkpointing

Irenal gtate Cnethpoini

"
m m Fadum

If these local checkpointsjointly do not form adistributed
snapshot, the cascaded rollback of recovery process may
lead to what is called the domino effect.

Possible solution isto use globally coor dinated checkpointing —
which requires global time synchronization rather than
independent (per processor) checkpointing

Chapter 9 Fault Tolerance 39

Backward Recovery

most extensively used in distributed systems and
generaly safest

can be incorporated into middleware layers

no guarantee that same fault may occur again
(deterministic view — affectsfailuretransparency
properties)

can not be applied to irreversible (non-idempotent)
operations, e.g. ATM withdrawal or UNIX rm *

Chapter 9 Fault Tolerance

Forward Recovery (Exception)

= Exceptions
- System states that should not occur
- Exceptions can be definedeither
= predefined (e.g. array -index out of bounds, divide by zero)
= explicitly declared by the programmer
= Raising an exception
- When such astateis detected in the execution of the program
- Theaction of indicating occurrence of such as state
= Exception handler
- Codeto be executed when an exception is raised
- Declared by the programmer
- For recovery action
= Supported by several programming languages
- Ada, ISOModula-2, Delphi, Java, C++.

Chapter 9 Fault Tolerance 41

