
1

Chapter 9 Fault Tolerance 1

Chapter 9: Fault Tolerance

n Fault Tolerance Basics, Hardware and Software Faults
n Failure Models in Distributed Systems
n Hardware Reliability Modeling
n Fault Tolerance in Distributed Systems
n Static Redundancy: reliability models, TMR
n Agreement in Faulty Systems:

− Byzantine Generals problem
n Fault Tolerant Services
n Reliable Client-Server Communication
n Reliable Group Communication
n Recovery

− Check-pointing
− Message Logging

Chapter 9 Fault Tolerance 2

Concepts of Fault Tolerance

q Hardware, software and networks cannot be totally free 
from  failures

q Fault tolerance is a non-functional (QoS) requirement 
that requires a system to continue to operate, even in the 
presence of faults

q Fault tolerance should be achieved with minimal 
involvement of users or system administrators  

q Distributed systems can be more fault tolerant than 
centralized systems, but with more processor hosts 
generally the occurrence of individual faults is likely to be 
more frequent

q Notion of a partial failure in a distributed system

Chapter 9 Fault Tolerance 3

Attributes
• Availability
• Reliability
• Safety
• Confidentiality
• Integrity
• Maintainability Consequences

• Fault
• Error
• Failure Strategies

• Fault prevention
• Fault tolerance
• Fault recovery
• Fault forcasting

Attributes, Consequences and Strategies

What is  a 
Dependable 
system

What is  a 
Dependable 
system

How to 
distinguish 
faults 

How to 
distinguish 
faults 

How to 
handle 
faults?

How to 
handle 
faults?

Chapter 9 Fault Tolerance 4

q System attributes:
· Availability – system always ready for use, or probability 

that system is ready or available at a given time
· Reliability – property that a system can run without 

failure, for a given time
· Safety – indicates the safety issues in the case the system 

fails
· Maintainability – refers to the ease of repair to a failed 

system
q Failure in a distributed system = when a service cannot 

be fully provided 
q System failure may be partial
q A single failure may affect other parts of a system 

(failure escalation)

Attributes of a Dependable System

Chapter 9 Fault Tolerance 5

results incausesFault Error Failure

Fault – is a defect within the system

Error – is observed by a deviation from the expected 
behaviour of the system

Failure occurs when the system can no longer perform as 
required (does not meet spec)

Fault Tolerance – is ability of system to provide a service, 
even in the presence of errors

Terminology of Fault Tolerance

Chapter 9 Fault Tolerance 6

Hard or Permanent – repeatable error, e.g. failed 
component, power fail, fire, flood, design error (usually 
software), sabotage

Soft Fault

Transient – occurs once or seldom, often due to 
unstable environment (e.g. bird flies past microwave 
transmitter)

Intermittent– occurs randomly, but where factors 
influencing fault are not clearly identified, e.g. unstable 
component

Operator error – human error

Types of Fault (wrt time)



2

Chapter 9 Fault Tolerance 7

Types of Fault (wrt attributes)

A server may produce arbitrary responses at arbitrary 
times

Arbitrary failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Response failure
Value failure
State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Omission failure
Receive omission
Send omission

A server halts, but is working correctly until it halts
Lost all history, must be reboot
Still remember state before crash, can be recovered
Hardware failure, must be replaced or re-installed

Crash failure
Amnesia crash
Pause crash
Halting crash

DescriptionType of failure

Chapter 9 Fault Tolerance 8

n Fault avoidance
− Techniques aim to prevent faults 

from entering the system during 
design stage

n Fault removal
− Methods attempt to find faults 

within a system before it enters 
service

n Fault detection
− Techniques used during service to 

detect faults within the operational 
system

n Fault tolerant
− Techniques designed to tolerant

faults, i.e. to allow the system 
operate correctly in the presence of 
faults. 

Actions to identify and 
remove errors:

• Design reviews
• Testing
• Use certified tools
• Analysis:

• Hazard analysis
• Formal methods 

- proof &
refinement

No non-trivial system 
can be guaranteed free 
from error
Must have an 
expectation of failure 
and make appropriate 
provision

Strategies to Handle Faults

Chapter 9 Fault Tolerance 9

Simplex systems
• highly reliable components

Dual Systems
• twin identical
• twin dissimilar
• control + monitor

N-way Redundant 
systems

• identical / dissimilar
• self-checking / voting

Dissimilar systems are
also known as 
"diverse“ systems in 
which an operation is 
performed in a 
different way in the 
hope that the same 
fault will not be 
present in different 
implementations.

The basic approach to 
achieve fault 
tolerance is 
redundancy

Architectural approaches

Chapter 9 Fault Tolerance 10

Example: RAID 
(Redundant Array of Independent Disks)

RAID has been classified into several levels: 0, 1, 2, 3, 4, 5, 6, 10, 
50, each level provides a different degree of fault tolerance

Chapter 9 Fault Tolerance 11

(a) Original circuit

(b) Triple modular redundancy

Failure Masking by TMR

Chapter 9 Fault Tolerance 12

n Uses 5 identical computers which can be assigned to redundant operation
under program control.

n During critical mission phases - boost, re-entry and loading - 4 of its 5
computers operate an NMR configuration, receiving the same inputsand 
executing identical tasks. When a failure is detected the computer
concerned is switched out of the system leaving a TMR arrangement.

n The fifth computer is used to perform non-critical tasks in a simplex 
mode, however, under extreme cases may take over critical functions. The 
unit has "diverse" software and could be used if a systematic fault was 
discovered in the other four computers.

n The shuttle can tolerate up to two computer failures; after a se cond failure 
it operates as a duplex system and uses comparison and self -test 
techniques to survive a third fault.

Example: Space Shuttle



3

Chapter 9 Fault Tolerance 13

n Hardware redundancy
− Use more hardware

n Software redundancy
− Use more software 

n Information redundancy , e.g.
− Parity bits

− Error detecting or correcting codes
− Checksums 

n Temporal (time) redundancy
− Repeating calculations and comparing results

− For detecting transient faults

Forms of redundancy

Chapter 9 Fault Tolerance 14

q Program code (may) contains bugs if actual behavior disagrees with 
the intended specification.  These faults may occur from:

§ specification error

§ design error
§ coding error, e.g. use on un-initialized variables
§ integration error
§ run time error e.g. operating system stack overflow, divide by zero

q Software failure is (usually) deterministic, i.e. predictable, based on 
the state of the system.  There is no random element to the failure –
unless the system state cannot be specified precisely.  A non-
deterministic fault behavior usually indicates that the relevant system 
state parameters have not been identified.

q Fault coverage – defines the fraction of possible faults that can be 
detected by testing (statement, condition or structural analysis)

Software Faults

Chapter 9 Fault Tolerance 15

N-version programming
n Use several different implementations of the same specification 
n The versions may run sequentially on one processor or in 

parallel on different processors.
n They use the same input and their results are compared.

−In the absence of a disagreement, the result is output.
−When produced different results:
n If there are 2 routines: 

n the routines may be repeated in case this was a transient error;
n to decide which routine is in error.

n If there are 3 or more routines, 
n voting may be applied to mask the effects of the fault.

Software Fault Tolerance

Chapter 9 Fault Tolerance 16

Process Groups

q Organize several identical processes into a group

q When a message is send to a group, all members of the 
group receives it

q If one process in a group fails (no matter what reason), 
hopefully some other process can take over for it

q The purpose of introducing groups is to allow processes 
to deal with collections of processes as a single 
abstraction.

q Important design issue is how to reach agreement within a 
process group when one or more of its members cannot be 
trusted to give correct answers.

Chapter 9 Fault Tolerance 17

a) Communication in a flat group.
b) Communication in a simple hierarchical group

Process Group Architectures

Chapter 9 Fault Tolerance 18

Fault Tolerant  in Process Group

q A system is said to be k fault tolerant if it can survive 
faults in k components and still meets its specification.

q If the components (processes) fail silently, then having k + 
1 of them is enough to provide k fault tolerant.

q If processes exhibit Byzantine failures (continuing to run 
when sick and sending out erroneous or random replies, a 
minimum 2k + 1 processes are needed.

q If we demand that a process group reaches an agreement, 
such as electing a coordinator, synchronization, etc., we 
need even more processes to tolerate faults .



4

Chapter 9 Fault Tolerance 19

Distributed Agreement

n A Distributed Agreement is a process to reach  an 
agreement among non-faulty processes within finite steps. 

n Suppose that n processes, P = {p1, p2, …, pn},try to 
establish an agreement. let pi∈ P has an initial value Vi?
If the set F contains all the faulty processes, then

( P – F) is the set of non-faulty processes?
n The goal of a distributed agreement algorithm is to let 

every process pi of P to calculate an agreement value Ai,
such that the following conditions hold:

n (1)Let pi, pj (i ≠ j; i, j = 1..n) be arbitrary processes,
if pi,pj∈(P – F), then Ai = Aj, and we call this value as 
an agreement value.

n (2) An agreement value of (P – F) if the function of {Vi}.

Chapter 9 Fault Tolerance 20

Byzantine Generals Problem

n N armies were called to meet the invading enemy. Each of 
the armies was led by its own general.Each general had his 
own preference about whether to attack. Since the attacks 
had to be coordinated, the generals sent messengers to 
each other.

n The disloyal generals would attempt to deceive the loyal 
generals to prevent a coordinated attack. The loyal 
generals therefore agreed to follow a protocol that ensure 
a distributed agreement.

n Each general pi will transmit its opinion Vi to others 
subject to the following interactive consistency 
conditions:

n (1) if sender ps is loyal,the loyal generals will agree Vs;
(2) if the sender ps a traitor, the loyal generals will agree 

on the same value for Vs.

Chapter 9 Fault Tolerance 21

Three Generals

n Since the generals can come to agreement if each can reliably 
broadcast its opinion, we will focus on a single broadcast, and 
let the sender be the commander general. To solve the Byzantine 
generals problem, each general takes his turn as commander.

n G A can’t follow C’s order, because if C is disloyal, A and B 
would obey different orders; G A can ’t disobey the order either, 
because C might be loyal. There, G A can not make a decision.

retreat

attack

C

attack

(1) commander disloyal (2) G B disloyal

G A G B

retreat

C

attack

G A G B

attack

retreat

attack

Chapter 9 Fault Tolerance 22

Four Generals

n Suppose there are four generals where one is disloyal. The 
commander broadcasts his order to each general. Next, each 
general tells the other two the order he received from C. 
The general then obeys the majority opinion.

n Suppose that there are t traitors among M generals, then we 
can prove: if M <= 3t, the system can not reach agreement.

C

attack

(1) commander disloyal (2) General C disloyal

C

G AG C G B G CG A

attack retreat attack attack

attack attack

attack retreat
attack

retreat

retreat

retreat

Attackattack

attack

G B
attack

Chapter 9 Fault Tolerance 23

Reliable Communication

q Fault Tolerance in Distributed system must consider 
communication failures. 

q A communication channel may exhibit crash, omission, 
timing, and arbitrary failures.

q Reliable P2P communication is established by a reliable 
transport protocol, such as TCP.

q In client/server model, RPC/RMI semantics must be 
satisfied in the presence of failures.

q In process group architecture or distributed replication 
systems, a  reliable multicast/broadcast service is very 
important.

Chapter 9 Fault Tolerance 24

In the case of process failure the following situations need 
to be dealt with:

Ø Client unable to locate server

Ø Client request to server is lost

Ø Server crash after receiving client request

Ø Server reply to client is lost

Ø Client crash after sending server request

Reliable Client-Server Communication



5

Chapter 9 Fault Tolerance 25

A server in client -server communication
a) Normal case
b) Crash after execution 
c) Crash before execution

Lost Request Messages when Server Crashes

Chapter 9 Fault Tolerance 26

Ø Client unable to locate server , e.g. server down, or server has 
changed
Solution:

- Use an exception handler – but this is not always possible in 
the programming language used

ØClient request to server is lost

Solution:

- Use a timeout to await server reply, then re -send – but be 
careful about idempotent operations (no side effects when re -send)

- If multiple requests appear to get lost assume ‘cannot locate 
server’ error

Solutions to Handle Server Failures (1)

Chapter 9 Fault Tolerance 27

Ø Server crash after receiving client request
Problem may be not being able to tell if request was carried out (e.g. 
client requests print page, server may stop before or after printing, before 
acknowledgement)
Solutions:

- rebuild server and retry client request (assuming ‘at least once’
semantics for request)

- give up and report request failure (assuming ‘at most once’
semantics), what is usually required is exactly once semantics, but this 
difficult to guarantee

Ø Server reply to client is lost

Client can simply set timer and if no reply in time assume server down, 
request lost or server crashed during processing request.

Solutions to Handle Server Failures (2)

Chapter 9 Fault Tolerance 28

ØClient crash after sending server request : Server unable to reply to 
client (orphan request)

Options and Issues:
- Extermination: client makes a log of each RPC, and kills 

orphan  after reboot. Expensive.
- Reincarnation.  Time divided into epochs (large intervals).  

When client restarts it broadcasts to all, and starts a new time epoch.  
Servers dealing with client requests from a previous epoch can be 
terminated.  Also unreachable servers (e.g. in different networkareas) 
may later reply, but will refer to obsolete epoch numbers.

- Gentle reincarnation, as above but an attempt is made to 
contact the client owner (e.g. who may be logged out) to take ac tion
Expiration, server times out if client cannot be reached to return reply

Solutions to Handle Client Failures 

Chapter 9 Fault Tolerance 29

Static Groups:  group membership is pre-defined
Dynamic Groups:  Members may join and leave, as necessary

Member = process ( or coordinator or RM Replica Manager)

Group 
Send

Address 
Expansion

Multicast 
Comm.

Membership 
Management

Leave

Fail

Join

Group

Group Communication

Chapter 9 Fault Tolerance 30

A simple solution to reliable multicasting when all receivers 
are known and are assumed not to fail

a) Message transmission
b) Reporting feedback

Basic Reliable-Multicasting



6

Chapter 9 Fault Tolerance 31

The essence of hierarchical reliable multicasting (best for large 
process groups.

a) Each local coordinator forwards the message to its children.
b) A local coordinator handles retransmission requests.

Hierarchical Feedback Control

Chapter 9 Fault Tolerance 32

v A group membership service maintains group views, which are 
lists of current group members. 
vThis is NOT a list maintained by a one member, but…
vEach member maintains its own view (thus, views may be 

different across members)
v A view Vp(g) is process p’s understanding of its group (list of 

members)
v Example: V p.0(g) = {p},  V p.1(g) = {p, q}, V p.2 (g) = {p, q, r}, 

V p.3 (g) = {p,r}
v A new group view is generated, throughout the group, whenever a 

member joins or leaves.
vMember detecting failure of another member reliable 

multicasts a “view change” message (causal-total order)

Group View (1)

Chapter 9 Fault Tolerance 33

Group View (2)

v An event is said to occur in a view vp,i(g) if the event occurs at p, and at 
the time of event occurrence, p has delivered vp,i(g) but has not yet 
delivered v p,i+1(g). 

v Messages sent out in a view i need to be delivered in that view at all
members in the group (“What happens in the View, stays in the View”)

v Requirements for view delivery
v Order: If p delivers v i(g) and then v i+1(g), then no other process q

delivers v i+1(g) before v i(g).
v Integrity: If p delivers v i(g), then p is in v i(g).
v Non-triviality: if process q joins a group and becomes reachable 

from process p, then eventually q will always be present in the views 
that delivered at p.

Chapter 9 Fault Tolerance 34

v Virtual Synchronous Communication = Reliable multicast + Group 
Membership

v The following guarantees are provided for multicast messages:
v Integrity : If p delivers message m, p does not deliver m again. Also p 

∈ group (m). 
vValidity : Correct processes always deliver all messages. That is, if p 

delivers message m in view v(g) , and some process q ∈ v(g) does not 
deliver m in viewv(g), then the next viewv’(g) delivered at p will 
exclude q.
vAgreement:  Correct processes deliver the same set of messages in 

any view.
vAll View Delivery conditions (Order, Integrity and Non-triviality 

conditions, from last slide) are satisfied
v “What happens in the View, stays in the View”

Virtual Synchronous Communication (1)

Chapter 9 Fault Tolerance 35

p

q

r

V(p,q,r)

p

q

r

V(p,q,r)

p
q

r

V(p,q,r)

p

q

r

V(p,q,r)

X
XX

V(q,r)

V(q,r)

V(q,r)

V(q,r)

X

X X

Not Allowed Not Allowed

Allowed Allowed

Virtual Synchronous Communication (2)

Chapter 9 Fault Tolerance 36

Six different versions of virtually synchronous reliable multicasting

YesCausal-ordered deliveryCausal atomic 
multicast

YesFIFO-ordered deliveryFIFO atomic 
multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered 
Delivery?Basic Message OrderingMulticast

Virtual Synchronous Communication (3)



7

Chapter 9 Fault Tolerance 37

n Once failure has occurred in many cases it is important to 
recover critical processes to a known state in order to 
resume processing

n Problem is compounded in distributed systems
Two Approaches:

n Backward recovery, by use of checkpointing (global 
snapshot of distributed system status)  to record the system 
state but checkpointing is costly (performance degradation)

n Forward recovery, attempt to bring system to a new stable 
state from which it is possible to proceed (applied in 
situations where the nature if errors is known and a reset can 
be applied)

Recovery Techniques

Chapter 9 Fault Tolerance 38

A recovery line is a distributed snapshot which 
records a consistent global state of the system 

Checkpointing

Chapter 9 Fault Tolerance 39

If these local checkpoints jointly do not form a distributed 
snapshot, the cascaded rollback of recovery process may 
lead to what is called the domino effect.
Possible solution is to use globally coordinatedcheckpointing –
which requires global time synchronization rather than 
independent (per processor) checkpointing

Independent Checkpointing

Chapter 9 Fault Tolerance 40

n most extensively used in distributed systems and 
generally safest

n can be incorporated into middleware layers
n no guarantee that same fault may occur again 

(deterministic view – affects failure transparency 
properties)

n can not be applied to irreversible (non-idempotent) 
operations, e.g. ATM withdrawal or UNIX rm *

Backward Recovery

Chapter 9 Fault Tolerance 41

n Exceptions
− System states that should not occur
− Exceptions can be defined either

n predefined (e.g. array-index out of bounds, divide by zero)
n explicitly declared by the programmer

n Raising an exception
− When such a state is detected in the execution of the program
− The action of indicating occurrence of such as state

n Exception handler
− Code to be executed when an exception is raised
− Declared by the programmer 
− For recovery action 

n Supported by several programming languages 
− Ada, ISO Modula-2, Delphi, Java, C++.

Forward Recovery (Exception)


