: Chapter 8: Replication and Consistency

> Replication: A key to providing good
performance, high availability and fault
tolerance in distributed systems (passive and
active).

» The important issue is keeping replicas
consistent.

» Consistency models and protocols

» The Gossip architecture: an approach to
propagate updates.

Distributed Systems

Enhancing Services by replicating data

b Performance

When adistributed system needs to scale in numbers and geographical
area, performance can be improved by replicating servers.

P Fault Tolerance

Under thefail-stop model, if upto N of N +1 serverscrash, at least one
remains to supply the service.

P Increased Availability

Service may not be available when serversfail or when the network is
partitioned.

» probability that one server fails; 1— P = availability of service.
.g. P = 5%, serviceis available 95% of thetime.

" probability that n servers fail; 1 —P" = availability of service.
.g. P=5%, n =3, service available 99.875% of thetime

Distributed Systems

:‘ Basic Moddl of Replication

Repli¢a Manager

O —

Q 2l ;YOH ;n; 4

Replication Transparency: User/client need not know that multiple
physical copiesof dataexist.

Replication Consistency: Dataisconsistent on all of thereplicas (or isin
the process of becoming consistent)

Distributed Systems

:; Replication M anagement (1)

t* Front End: Request Communication
«* Requests can be madeto asingle RM or to multiple RMs

t* Coordination: The RMs decide

« whether the request is to be applied

«%+ the order of requests

“*FIFO ordering: If aFE issuesr thenr’, then any correct RM
handlesrand thenr’.

«*Causal ordering: If the issue of r* happened before’ the issue of
r’, thenany correct RM handlesr and thenr'.

«“»Total ordering: If acorrect RM handlesr and thenr’, then any
correct RM handlesr and thenr'.

27

Execition' The RMs execute the requiest tentatively

Distributed Systems

j: Replication M anagement (2)

¢ Agreement: The RMs attempt to reach consensus on the
effect of the request.

“*E.g., Two phase commit through a coordinator
“* Response
* One or more RMs respondsto the front end.

* In the case of fail-stop model, the FE returns the first
response to arrive.

Distributed Systems

:. Basic Replication Architecture

(b) Primary copy Architecture

Distributed Systems




" Consistency models (1)
>

Peocns Frooesd Procwss
x i & LoD ey
¥ ¥ L B
b = | ot
| _1 1
'y

Defrisuted daia dons

= Consistency model (or consistency semantics)
- Contract between processes and the data store
= |f processes obey certain rules, datastorewill work correctly
- All models attempt to return the results of the last writefor aread
operation
= Differ in how “last” write is determined/defined

Distributed Systems 7

: Consistency models (2)
»

Data-Centric Client-Centric
Consistency models Consistency models
stron Strict Monotonic-read
Sequential Monotonic-write
Causal Read-your-writes
PRAM IVrite-follow -reads
Weak
Release
weak Entry
Distributed Systems 8

= Any read aways returns the result of the
most recent write
- Implicitly assumes the presence of a global
clock
- A writeisimmediately visibleto all
processes

= Anideal model, but difficult to achievein real
systems (network delays can be variable)

Distributed Systems 9

= Sequential consistency: weaker than strict consistency
- Assumesall operations are executed in some sequential order
and each process issues operations in program order
= Any validinterleaving isalowed
= All agreeon the sameinterleaving
= Each process preservesits program order
= Nothing is said about “most recent write ”

Permitted Not Permitted

Distributed Systems 10

Causal consistency

= Causally related writes must be seen by all
processesin the same order.

- Concurrent writes may be seen in different orders
on different machines

Not permitted Permitted

Distributed Systems 11

= Pipelined Random Access Memory Consistency: writesfrom
aprocess are seen by othersin the same order. Writes from
different processes may be seen in different order (even if
causally related)
Relaxes causal consistency
Simple implementation: tag each write by (Proc 1D, seq #)

F2. Fajs  Raje Rpoc

Distributed Systems 12




Wesak consistency

= Weak consistency
- Accessesto synchronization variables associated with adata

storearesequentially consistent
No operation on a synchronization variable is alowed to be
performed until all previous writes have been completed
everywhere
No read or write operation on dataitems are allowed to be
performed until al previous operations to synchronization

variables have been performed.
i W {:vacm g
[T 5 > ™
1 Rixje  Rls
Permitted Not permitted
Distributed Systems 13

Release consistency

= Beforearead or write operation on shared datais
performed, all previous acquires done by the process must
have completed successfully.

= Beforeareleaseisallowed to be performed, all previous
reads and writes by the process must have completed

= Accesses to synchronization variables are FIFO consistent
(sequential consistency isnot required).

P1 Ayl Wls W el
[H Argli RidE  Redl

5] Alcls

Distributed Systems 14

Entry consistency

= Anacquire access of a synchronization variable is not alowed to
perform with respect to aprocess until al updates to the guarded shared
data have been performed with respect to that process.

= Before an exclusive mode access to asynchronization variableby a
process s alowed to perform with respect to that process, no other
processmay hold the synchronization variable, not evenin
nonexclusivemode.

= After an exclusive mode access to asynchronization variable hasbeen
performed, any other process's next nonexclusive mode access to that
synchronization variable may not be performed until it has performed
with respect to that variable's owner.

Distributed Systems 15

Summary of Data-Centric Consistency Models

OSSN T[ESTrTpTTom
rrer SOrITETTTE Ot Ty O STarett TerSTGTOArphTySCar T ey
Lential Al processes see all shar ed accessesin the same or der . Acceses are not ordered in

TTTE(TOTar O Trer Ty

usal Al processes see causally -r elated shar ed accessesin the same or der (causal
o[eertoy

Ay Al processes see writes from each other in the order they wereused. Writesfrom
tterenTpT TrOT T AT DT rer(STgrEproCesS o ter oy
Consistency-modelsnotusing-s, iZzation-operations.

4 g5y P

OSSN T[ESTrTpTTom

23 ared gatacan onto OnTy arter asyncnronization 1s gone

re raredtararar frerrerCriTTatTegroT T eXtTeT

ntry shared data pertaining to a critical region are made consistentwhen a critical

Models with synchronization operations.

Distributed Systems 16

= Many systems: one or few processes perform updates
How frequently should these updates be made available to other
read-only processes?
= Examples:
DNS: single naming authority per domain
Only naming authority allowed updates (no write-writeconflicts)
How should read-write conflicts (consistency) be addressed?
NIS: user information database in Unix systems
= Only sys-admins update database, usersonly read data
= Only user updates are changes to password

Distributed Systems 17

Eventual Consisten
= ~

= Inabsence of updates, all replicas converge towardsidentical copies
- Only requirement: an update should eventually propagate to al replicas
Cheap to implement: no or infrequent write-write conflicts
Thingswork fine so long as user accesses same replica
What if they don’t:

Distributed Systems 18




: Semantics of Client-Centric Models

= Assumeread operations by asingle process Pat two different local copies
of the same data store

Four different consistency semantics

= Monotonic reads
Once read, subsequent reads on that data items return same or mae
recent values

= Monotonic writes

- A writemust be propagated to all replicas before a successive write by

the same process
Resembles FIFO consistency (writes from same process are processed
in same order)

= Read your writes read(x) always returns write(x) by that process

= Writesfollow reads: write(x) following read(x) will take place on same or
morerecent version of x

Distributed Systems 19

3 Monotonic Reads

L1 W ming L e Fn

L [ P Micgl L i Rl e
A

A monotonic-read consistent datastore A data-storethat isnot monotonic- read

= Theread operations performed by a single processP at two
different local copies (L1 and L 2) of the same data store.

= Wherex; denotesthe version of x at local copy Li, and WS
represents awrite sequence, WS(x; X,) denotes that x,
version isformed before x,.

= Ex:auser readsemail x, in New Y ork, and then flies to
Toronto, open the copy of email box there, monotonic reads
consistency guaranteesthat x, will bein the mail box in
Toronto.

Distributed Systems 20

Ll Wi i |
Lz ] Vil I Wieg
I ™

A monotonic-write consistent datastore A data storethat isnot monotonic-write

= Thewrite operations performed by a single process Pat two
different local copies of the same data store

= Resemblesto PRAM, but here we are considering consistency only
for asingle process (client) instead of for acollection of concurrent
processes.

Distributed Systems 21

: Read- Y our-Writes

Lt e L1 Wiy
WS gl E L2 W s Fiwg)
() i

Read-your-writes consistency Non Read-your-writes consistency

= Closed related to monotonic reads

= A writeoperation is always completed before a successive read
operation by the same process

= Ex: editor and browser, if not integrated, you may not read-your -
writesof an HTML page

Distributed Systems 22

b WSy M) Lt g )
L2 o= Wil 2 ey [
Al ]

Writes-follow-r eads consistent Non Writes-follow-r eads consistent

= Updates are propagated as the result of previous read operation

= Any successive write operation on x by a process will be performed
on acopy of x that ismost recently read by that process

= Ex: commentson newsgroup, let A an article read recently, R the
responseto that article, then R must followsA.

Distributed Systems 23

\ Replica Placement
>

4 i
i a B oo
5 M
= ’ .
reas rared wpece
w

Thelogical organization of different kinds of
copies of adatastore into three concentric rings.

Distributed Systems 24




L=}

A iR o
gy of Bis F
LS
Chent 2 "
o4
[=H - -
Earivir O ook @sses om Cpand

Lo o4 F ey wiisa some hon

Counting access requests from different clients:
(1) system maintainstwo limits: del(S, F) and rep(S, F)
(2) if county(P, F) > rep(Q, F) , then replicates F on P

Distributed Systems 25

; Update Propagation
>

= Propagate only a notification of an update: a so called
invalidation protocol, only informs other copies that
their dataare no longer valid. A copy updatesitsel f
when needed. Useful when reads/writesis small.

= Transfer datafrom one copy to another: useful when
reads/writesisrelatively high. Pack multiple
modificationsinto asingle update package will save
communication overhead.

= Propagate the update operation to other copies: also
referred to asactive replication. Let every copy do the
same update operation.

Distributed Systems 26

Il vs Push Protocols

=
= Push-based (server-based): updates are propagated
to other copies actively. Useful for replicas need to
maintain arelatively high degree of consistency.
= Push-based (client-based): a server or client

requests another server to send it any updatesit has
at that moment. Efficient when reads/writesislow.

rrEtSeTTeT——{ tSTot e Tep ST o
er—foptre Tt POt
Response time at (0 ferch-undate time) Eerch-undatetime
citerT
Distributed Systems 27

: Epidemic Protocols
=

= UsedinBayou systemfrom Xerox PARC
= Bayou: weakly connected replicas
Useful in mobile computing (mobile [aptops)
- Useful inwide areadistributed databases (weak connectivity)
= Based on theory of epidemics (spreading infectious diseases)
- Upon an update, try to“infect other replicasasquickly aspossible
- Par -wiseexchange of updates (like pair-wise spreading of a
disease)
Terminology:

= Infective store: store with an update it is willing to spread
= Susceptible store: store that is not yet updated
= Many algorithms possible to spread updates

Distributed Systems 28

Spreading an Epidemic
= Anti-entropy
Server P picksa server Q at random and exchanges updates
- Threepossibilities: only push, only pull, both push and pull
Claim: A pure push-based approach does not help spread updates
quickly (Why?)
= Pull orinitial push with pull work better, O(log N)
= Gossiping (Rumor mongering )
- Upon receiving an update, P triesto push to Q

If Q already received the update, stop spreading with probability
1/k, wherek is a predefined constant

- Analogous to“ hot" gossip items=> stop spreading if “ cold”
Does not guarantee that all replicas receive updates

= Chances of ctaving-suscantiblee=afk: (13
=—Chanessof staying-eusceptible: = of

1 2 2 a 5
s 0.203188 0.059520 0.019827 0.006977 0.002516

Distributed Systems 29

Primary-Based Remote-Write Protocols

»

2 e wanisy i Bachay seee

htn wove

= Primary -based remote-write protocol with afixed server to
which all read and write operations are forwarded. Low
efficiency if many read operationsinvolved.

Distributed Systems 30




: Primary-Backup Remote-Write Protocol

Tk A
& Fes lamin i Seriar samer

w| e LR

)3 1 5 ¥ ¥
[— P — - -

-— T 5
oaw Ve . Cans morw
b el

i
WD ACETERAMIGE AT COTpiA]

= Read operations are on local copies, where updates must be
propagated to backup server and other copies. Problem: long
timefor aupdate propagation.

Distributed Systems 31

!.\ Primary-Based L ocal-Write Protocols

Gares dome Sra wr

bod hwTa & Wi

Cws wxsa

£ ly werap
o FOAT (Pl (ol ' S AR

= Primary -based local-write protocol in which asingle copy is migrated

between processes. A fully distributed non-replicated version of the
data store. Must locate where each dataitem currently is.

Distributed Systems 32

: Primary-Backup L ocal-Write Protocol

n e L B ) W ok e

= Primary -backup protocol in which the primary migratesto the
process wanting to perform an update. Read local copy, whereas
updates must be propagated to all replicas. Applicable to mobile
computers.

Distributed Systems 33

Active Replication
=

[LER TR = A

w = T e
L | *
-
A R -
¥
L4
A
A1 ws o =z
the sorme ireocsion
&

et il

= Each replicahas an associated process that carries out update
operations. A problem needs to be solved isthat of replicated
invocations.

Distributed Systems 34

j; Active Replication Update Protocol

S i g

There are no general-purpose solutions, one solution isto cover alayer
of centralized control:

Forwarding an invocation request from areplicated object.
Returning areply to areplicated object.

Distributed Systems 35

Quorum-Based Protocal

y

= Suppose adataitem x isreplicated on N servers.

= Each server S; assigns x avoting weight v;(x).

= Define R(x) as read quorum and W(x) write quorum
= Toread X, aclient must get enough votes: év-(X)“ Re)
= Towritex, aclient must satisfy: ésw(x)a W3

= Thevalue of R(x) and W(x) must follow the following
two constraints:

» (1) RE*WKX>A V() (prevent read/write conflict)
(%] 2W(x)> & V(%) (prevent write/write conflict)

Distributed Systems 36




Quorum-Based Protocol

> "

o Gt
bl b

Three examples of the voting agorithm:

A correct choice of read and write set

A choicethat may lead to write -writeconflicts

A correct choice, known as ROWA (Read One, Write All)

Distributed Systems

37




