
1

Distributed Systems 1

Chapter 8: Replication and Consistency

ØReplication: A key to providing good
performance, high availability and fault
tolerance in distributed systems (passive and
active).

Ø The important issue is keeping replicas
consistent.

Ø Consistency models and protocols

Ø The Gossip architecture: an approach to
propagate updates.

Distributed Systems 2

Ø Performance
When a distributed system needs to scale in numbers and geographical
area, performance can be improved by replicating servers.

Ø Fault Tolerance
Under the fail-stop model, if up to N of N +1 servers crash, at least one
remains to supply the service.

Ø Increased Availability

Service may not be available when servers fail or when the network is
partitioned.

P: probability that one server fails; 1 – P = availability of service.
e.g. P = 5%, service is available 95% of the time.

Pn: probability that n servers fail; 1 – Pn = availability of service.
e.g. P = 5%, n = 3, service available 99.875% of the time

Enhancing Services by replicating data

Distributed Systems 3

Replication Transparency: User/client need not know that multiple
physical copies of data exist.

Replication Consistency: Data is consistent on all of the replicas (or is in
the process of becoming consistent)

Client Front End
RM

RM

RM
Client Front End

Client Front End

Service
server

server

server

Replica Manager

Basic Model of Replication

Distributed Systems 4

Replication Management (1)

v Front End: Request Communication
v Requests can be made to a single RM or to multiple RMs

v Coordination: The RMs decide
v whether the request is to be applied
v the order of requests
vFIFO ordering: If a FE issues r then r’, then any correct RM

handles rand then r’.
vCausal ordering: If the issue of r“happened before” the issue of

r’, then any correct RM handles r and then r’.
vTotal ordering: If a correct RM handles r and then r’, then any

correct RM handles r and then r’.

v Execution: The RMs execute the request tentatively.

Distributed Systems 5

v Agreement: The RMs attempt to reach consensus on the
effect of the request.

vE.g., Two phase commit through a coordinator

v Response

v One or more RMs responds to the front end.

v In the case of fail-stop model, the FE returns the first
response to arrive.

Replication Management (2)

Distributed Systems 6

CL

CL

FE

FE

RM RM

RM

CLFE

CL

CL

FE

FE

PR
RM

SL
RM

SL
RM

CLFE

W

WW

R

RR

(a) Gossip Architecture

(b) Primary copy Architecture

Basic Replication Architecture

2

Distributed Systems 7

n Consistency model (or consistency semantics)
− Contract between processes and the data store

n If processes obey certain rules, data store will work correctly
− All models attempt to return the results of the last write for a read

operation
n Differ in how “last” write is determined/defined

Consistency models (1)

Distributed Systems 8

Consistency models (2)

Strict
Sequential

Causal
PRAM
Weak

Release
Entry

Data-Centric
Consistency models

strong

weak

Client-Centric
Consistency models

Monotonic-read
Monotonic-write

Read-your-writes
Write-follow-reads

Distributed Systems 9

Strict Consistency

n Any read always returns the result of the
most recent write
− Implicitly assumes the presence of a global

clock
− A write is immediately visible to all

processes
n An ideal model, but difficult to achieve in real

systems (network delays can be variable)

Distributed Systems 10

Sequential Consistency

n Sequential consistency: weaker than strict consistency
− Assumes all operations are executed in some sequential order

and each process issues operations in program order
n Any valid interleaving is allowed
n All agree on the same interleaving
n Each process preserves its program order
n Nothing is said about “most recent write ”

Permitted Not Permitted

Distributed Systems 11

Causal consistency

n Causally related writes must be seen by all
processes in the same order.
− Concurrent writes may be seen in different orders

on different machines

Not permitted Permitted

Distributed Systems 12

PRAM consistency

n Pipelined Random Access Memory Consistency: writes from
a process are seen by others in the same order. Writes from
different processes may be seen in different order (even if
causally related)
– Relaxes causal consistency
– Simple implementation: tag each write by (Proc ID, seq #)

3

Distributed Systems 13

Weak consistency

n Weak consistency
− Accesses to synchronization variables associated with a data

store are sequentially consistent
− No operation on a synchronization variable is allowed to be

performed until all previous writes have been completed
everywhere

− No read or write operation on data items are allowed to be
performed until all previous operations to synchronization
variables have been performed.

Not permittedPermitted

Distributed Systems 14

n Before a read or write operation on shared data is
performed, all previous acquires done by the process must
have completed successfully.

n Before a release is allowed to be performed, all previous
reads and writes by the process must have completed

n Accesses to synchronization variables are FIFO consistent
(sequential consistency is not required).

Release consistency

Distributed Systems 15

n An acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the guarded shared
data have been performed with respect to that process.

n Before an exclusive mode access to a synchronization variable by a
process is allowed to perform with respect to that process, no other
process may hold the synchronization variable, not even in
nonexclusive mode.

n After an exclusive mode access to a synchronization variable hasbeen
performed, any other process's next nonexclusive mode access to that
synchronization variable may not be performed until it has performed
with respect to that variable's owner.

Entry consistency

Distributed Systems 16

Models with synchronization operations.

Shared data pertaining to a critical region are made consistent when a critical
region is entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

Consistency models not using synchronization operations.

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that order (Single-process ordering)PRAM

All processes see causally -related shared accesses in the same order (causal
ordering)Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
time (Total ordering)Sequential

Absolute time ordering of all shared accesses matters (Global physical time)Strict

DescriptionConsistency

Summary of Data-Centric Consistency Models

Distributed Systems 17

n Many systems: one or few processes perform updates
− How frequently should these updates be made available to other

read-only processes?
n Examples:

− DNS: single naming authority per domain
− Only naming authority allowed updates (no write -write conflicts)
− How should read-write conflicts (consistency) be addressed?
− NIS: user information database in Unix systems

n Only sys-admins update database, users only read data
n Only user updates are changes to password

Client-Centric Consistency models

Distributed Systems 18

n In absence of updates, all replicas converge towards identical copies
− Only requirement: an update should eventually propagate to all replicas
− Cheap to implement: no or infrequent write -write conflicts
− Things work fine so long as user accesses same replica
− What if they don’t:

Eventual Consistency

4

Distributed Systems 19

n Assume read operations by a single process P at two different local copies
of the same data store
− Four different consistency semantics

n Monotonic reads
− Once read, subsequent reads on that data items return same or more

recent values
n Monotonic writes

− A write must be propagated to all replicas before a successive write by
the same process

− Resembles FIFO consistency (writes from same process are processed
in same order)

n Read your writes: read(x) always returns write(x) by that process
n Writes follow reads: write(x) following read(x) will take place on same or

more recent version of x

Semantics of Client-Centric Models

Distributed Systems 20

n The read operations performed by a single process P at two
different local copies (L1 and L2) of the same data store.

n Where xi denotes the version of x at local copy Li, and WS
represents a write sequence, WS(x1; x 2) denotes that x1
version is formed before x 2.

n Ex: a user reads email x1 in New York, and then flies to
Toronto, open the copy of email box there, monotonic reads
consistency guarantees that x1 will be in the mail box in
Toronto.

Monotonic Reads

A monotonic-read consistent data store A data-store that is not monotonic- read

Distributed Systems 21

Monotonic Writes

n The write operations performed by a single process P at two
different local copies of the same data store

n Resembles to PRAM, but here we are considering consistency only
for a single process (client) instead of for a collection of concurrent
processes.

A monotonic-write consistent data store A data store that is not monotonic-write

Distributed Systems 22

Read-Your-Writes

Read-your-writes consistency Non Read-your-writes consistency

n Closed related to monotonic reads
n A write operation is always completed before a successive read

operation by the same process
n Ex: editor and browser, if not integrated, you may not read -your-

writes of an HTML page

Distributed Systems 23

Write-follow-reads

Writes-follow-reads consistent Non Writes-follow-reads consistent

n Updates are propagated as the result of previous read operation
n Any successive write operation on x by a process will be performed

on a copy of x that is most recently read by that process
n Ex: comments on news group, let A an article read recently, R the

response to that article, then R must follows A.

Distributed Systems 24

Replica Placement

The logical organization of different kinds of
copies of a data store into three concentric rings.

5

Distributed Systems 25

Counting access requests from different clients:
(1) system maintains two limits: del(S, F) and rep(S, F)
(2) if countQ(P, F) > rep(Q, F) , then replicates F on P

Server-Initiated Replicas

Distributed Systems 26

Update Propagation

n Propagate only a notification of an update: a so called
invalidation protocol, only informs other copies that
their data are no longer valid. A copy updates itself
when needed. Useful when reads/writes is small.

n Transfer data from one copy to another: useful when
reads/writes is relatively high. Pack multiple
modifications into a single update package will save
communication overhead.

n Propagate the update operation to other copies: also
referred to as active replication. Let every copy do the
same update operation.

Distributed Systems 27

Fetch-update timeImmediate (or fetch-update time)Response time at
client

Poll and updateUpdate to all clientsMessages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

n Push -based (server-based): updates are propagated
to other copies actively. Useful for replicas need to
maintain a relatively high degree of consistency.

n Push -based (client-based): a server or client
requests another server to send it any updates it has
at that moment. Efficient when reads/writes is low.

Pull vs Push Protocols

Distributed Systems 28

n Used in Bayou system from Xerox PARC

n Bayou: weakly connected replicas
− Useful in mobile computing (mobile laptops)
− Useful in wide area distributed databases (weak connectivity)

n Based on theory of epidemics (spreading infectious diseases)
− Upon an update, try to “infect” other replicas as quickly as possible
− Pair -wise exchange of updates (like pair-wise spreading of a

disease)
− Terminology:

n Infective store: store with an update it is willing to spread
n Susceptible store: store that is not yet updated

n Many algorithms possible to spread updates

Epidemic Protocols

Distributed Systems 29

n Anti-entropy
− Server P picks a server Q at random and exchanges updates
− Three possibilities: only push, only pull, both push and pull
− Claim: A pure push-based approach does not help spread updates

quickly (Why?)
n Pull or initial push with pull work better, O(log N)

n Gossiping (Rumor mongering)
− Upon receiving an update, P tries to push to Q
− If Q already received the update, stop spreading with probability

1/k, where k is a predefined constant
− Analogous to “hot” gossip items => stop spreading if “cold”

− Does not guarantee that all replicas receive updates
n Chances of staying susceptible: s= e-(k+1)(1 -s)

Spreading an Epidemic

k 1 2 3 4 5
s 0.203188 0.059520 0.019827 0.006977 0.002516

Distributed Systems 30

n Primary -based remote-write protocol with a fixed server to
which all read and write operations are forwarded. Low
efficiency if many read operations involved.

Primary-Based Remote-Write Protocols

6

Distributed Systems 31

n Read operations are on local copies, where updates must be
propagated to backup server and other copies. Problem: long
time for a update propagation.

Primary-Backup Remote-Write Protocol

Distributed Systems 32

Primary-Based Local-Write Protocols

n Primary -based local-write protocol in which a single copy is migrated
between processes. A fully distributed non-replicated version of the
data store. Must locate where each data item currently is.

Distributed Systems 33

Primary-Backup Local-Write Protocol

n Primary -backup protocol in which the primary migrates to the
process wanting to perform an update. Read local copy, whereas
updates must be propagated to all replicas. Applicable to mobile
computers .

Distributed Systems 34

Active Replication

n Each replica has an associated process that carries out update
operations. A problem needs to be solved is that of replicated
invocations.

Distributed Systems 35

Active Replication Update Protocol

There are no general-purpose solutions, one solution is to cover a layer
of centralized control:

• Forwarding an invocation request from a replicated object.
• Returning a reply to a replicated object.

Distributed Systems 36

Quorum-Based Protocol

n Suppose a data item x is replicated on N servers.

n Each server Si assigns x a voting weight vi(x).
n Define R(x) as read quorum and W(x) write quorum

n To read x, a client must get enough votes:
n To write x, a client must satisfy:

n The value of R(x) and W(x) must follow the following
two constraints:

n (1) (prevent read/write conflict)

(2) (prevent write/write conflict)

∑ ≥
iS

i xRxv)()(

∑ ≥
iS

i xWxv)()(

∑
=

>+
Ni

i xvxWxR
..1

)()()(

∑
=

>
Ni

i xvxW
..1

)()(*2

7

Distributed Systems 37

Quorum-Based Protocol

n Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write -write conflicts
c) A correct choice, known as ROWA (Read One, Write All)

