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CIS2520 Lab 7

DATA STRUCTURE







Preoder: visit parent before children from left to right

Recursive:
preorder(v){
visit(v)
for each child wof v
preorder(w)



Traversals







Postorder: visit the children first before parent

Recursive:

postorder(v){
for each child w of v
postorder(w)
visit(v)






Q Internal node

External node

Tree T with n nodes, let h be the
height:

1. External nodes of T: at least
h+1 and at most 2”°h

2. Internal nodes of T: at least h
and at most 2h — 1

3. Total number of nodes: at
least 2h + 1 and at most
2”M(h+1) — 1

4. Height h is at least log(n+1) —
1 and at most (n-1)/2, that is
log(n+1) — 1 <=h <= (n-1)/2



Inorder: left child, parent, then right child

Recursive:

inorder(v){
inorder(v.leftchild);
visit(v);
inorder(v.rightchild);



Binary Tree




Binary Tree

Q Internal node

| External node




O Internal node

| External node




Heap

» Heap is a realization of priority queue using binary
tree data structure

» A heap has two properties:

Heap-Order property: A key store at a node v is greater than
that of v’s parent

Complete Binary Tree: A binary tree T is complete if the levels
0,1....h — 1 has the maximum number of nodes possible




Heap

» Insertion: where to insert, perform upheap

» Keep track of the last node

o Case 1: last node is a left child, insert the new value into the
right child

o Case 2: last node is a right child, go up the branch until you
reach a left child, traverse down its right sibling node, traverse
down its left branch until the lowest node is reached, insert the
new value into its left child node

o Case 3: the tree is empty, insert the new value into its root

o Case 4: last node is the right most node, i.e. the last level is
full, insert the new value into a left node starting a new level













Heap

» Removal: remove the key at root, replace root with
key at last node, downheap to reorder the tree

o Case 1: key at r is removed, both children of r are external
nodes, nothing to be done

o Case 2: key at r is removed, left child s of r is an internal node
while right child v is an external node. If key(r) > key(s),
downheap on s until the tree is reordered.

o Case 3: key at r is removed, left child s and right child v are
both internal nodes. Let w be the child node with the smaller

key, if key(r) > key(w), downheap on w until the tree is
reordered.













Binary search tree with a balanced property

Height-Balance Property: For every internal node v
of T, the heights of the children of v can differ by at
most 1

Need an algorithm to detect imbalance
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Insertion and deletion can cause the tree to become
imbalanced

Need an algorithm to restructure the tree to restore
balance
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AVL Tree

» Removal can cause the tree to become imbalance

» Where to restructure:
o Let w be the node removed

o Let z be the first imbalanced node encountered going up from
w

o From z, pick the child y of z that has the highest height value.

o From y, pick the child of x of y that has the highest height
value.

O Restructure z, y, x




Note: if the children of y has the same height values,
then an arbitrary child can be picked, but multiple

restructurings might be necessary depending on the
choice of x, vy,
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