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Trees
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 Traversals

 Binary Tree

 Binary Search Tree

 Heap

 AVL Tree

 Assignment 3
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Preoder:  visit parent before children from left to right

Recursive:

preorder(v){
visit(v)
for each child w of v

preorder(w)
}



Traversals
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Iterative:

Preorder(v){
Stack s;
iterator it;
s.push(v);
while(s.size() > 0 ){

it = s.pop();
visit(it);
for each child w of it from right to left

s.push(w);
}



Traversal
5

Preorder: A, B, E, K, L, F, C, G, H, M, N, D, I, J



Traversals
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Postorder:  visit the children first before parent

Recursive:

postorder(v){
for each child w of v

postorder(w)
visit(v)

}



Traversals
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Postorder: K, L, E, F, B, G, M, N, H, C, I, J, D, A



Binary Tree
8

Tree T with n nodes, let h be the 
height:

1. External nodes of T: at least 
h+1 and at most 2^h

2. Internal nodes of T: at least h 
and at most 2^h – 1

3. Total number of nodes: at 
least 2h + 1 and at most 
2^(h+1) – 1

4. Height h is at least log(n+1) –
1 and at most (n-1)/2, that is 
log(n+1) – 1 <= h <= (n-1)/2



Binary Tree
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Inorder: left child, parent, then right child

Recursive:

inorder(v){
inorder(v.leftchild);
visit(v);
inorder(v.rightchild);

}
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Iterative:
inorder(v){

stack s;
iterator it;
it = v;
while(it != null){

while(it != null){
if(it.right != null) s.push(it.right);
s.push(it);
it = it.left;

}
it = s.pop();
while(s.size() > 0 && it.right == null){

visit(it);
it = s.pop();

}
visit(it);
it = s.size()>0? s.pop():null;

}



Binary Tree
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Inorder: H, D, I, B, E, A, J, 
F, L, K, M, C, G



Heap
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Heap
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 Heap is a realization of priority queue using binary 
tree data structure

 A heap has two properties:

 Heap-Order property:  A key store at a node v is greater than 
that of v’s parent

 Complete Binary Tree:  A binary tree T is complete if the levels 
0,1….h – 1 has the maximum number of nodes possible



Heap
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 Insertion: where to insert, perform upheap

 Keep track of the last node

 Case 1: last node is a left child, insert the new value into the 
right child

 Case 2: last node is a right child, go up the branch until you 
reach a left child, traverse down its right sibling node, traverse 
down its left branch until the lowest node is reached, insert the 
new value into its left child node

 Case 3:  the tree is empty, insert the new value into its root

 Case 4:  last node is the right most node, i.e. the last level is 
full, insert the new value into a left node starting a new level



Heap
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Case 1: inserted 8, last node was 11, the ordering is good, no 
upheap needed



Heap
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Case 2: inserted 2, need to perform upheaps until the keys are reordered, 3 
upheaps needed



Heap
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Inserted 2 and reordered



Heap
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 Removal: remove the key at root, replace root with 
key at last node, downheap to reorder the tree

 Case 1: key at r is removed, both children of r are external 
nodes, nothing to be done

 Case 2: key at r is removed, left child s of r is an internal node 
while right child v is an external node.  If key(r) > key(s), 
downheap on s until the tree is reordered.

 Case 3: key at r is removed, left child s and right child v are 
both internal nodes.  Let w be the child node with the smaller 
key, if key(r) > key(w), downheap on w until the tree is 
reordered.



Heap
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Remove key 2:  replace key at root with key at last node, 20.  
Downheap on 4, which is smaller than 5, until tree is reordered.



Heap
20

Downheap on 6 which is smaller than 7.



Heap
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The tree is reordered
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 Binary search tree with a balanced property

 Height-Balance Property:  For every internal node v 
of T, the heights of the children of v can differ by at 
most 1

 Need an algorithm to detect imbalance



AVL Tree
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 Store the inverse value of the height of the branches 
at each node.

 External node has a height value of 0

 Internal node has a value of the height of its longest branch 
from the external node



AVL Tree
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Note:  the height value of each node is the maximum value of the 
longest branch from the external node 



AVL Tree
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 Insertion and deletion can cause the tree to become 
imbalanced

 Need an algorithm to restructure the tree to restore 
balance
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 4 strategies to restructure the tree

 Case 1: single left rotation



AVL Tree
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 Case 2:  single right rotation
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 Case 3:  double left rotations
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 Case 4: double right rotations
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 Need an algorithm to decide where to restructure in 
a tree

 Insertion:

 Let x be the node that is inserted.  Go up the branch along x 
until a node z is detected where z’s subtrees are imbalanced

 Let w be z’s child and v be w’s child along x’s branch.  
Restructure w, v, z
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31

Insertion of 4 caused the tree to be imbalanced
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Use double right rotation on z, w, v



AVL Tree
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Balance is restored



AVL Tree
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 Removal can cause the tree to become imbalance

 Where to restructure:

 Let w be the node removed

 Let z be the first imbalanced node encountered going up from 
w

 From z, pick the child y of z that has the highest height value.

 From y, pick the child of x of y that has the highest height 
value.

 Restructure z, y, x



AVL Tree
35

 Note: if the children of y has the same height values, 
then an arbitrary child can be picked, but multiple 
restructurings might be necessary depending on the 
choice of x, y, z



AVL Tree
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Removing 32 causes the tree to become imbalanced
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Going up along 32 branch, z is the first node encountered that is 
imbalanced, 17 has a value of 1, and 62 has the value of 3.  Pick 62 as 
y.  Since 50 and 78 both have a value of 2, arbitrarily pick 78 as x.



AVL Tree
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Use single left rotation to restructure x, y, z


