
D A T A S T R U C T U R E

CIS2520 Lab 7

1

Trees
2

 Traversals

 Binary Tree

 Binary Search Tree

 Heap

 AVL Tree

 Assignment 3

Traversals
3

Preoder: visit parent before children from left to right

Recursive:

preorder(v){
visit(v)
for each child w of v

preorder(w)
}

Traversals
4

Iterative:

Preorder(v){
Stack s;
iterator it;
s.push(v);
while(s.size() > 0){

it = s.pop();
visit(it);
for each child w of it from right to left

s.push(w);
}

Traversal
5

Preorder: A, B, E, K, L, F, C, G, H, M, N, D, I, J

Traversals
6

Postorder: visit the children first before parent

Recursive:

postorder(v){
for each child w of v

postorder(w)
visit(v)

}

Traversals
7

Postorder: K, L, E, F, B, G, M, N, H, C, I, J, D, A

Binary Tree
8

Tree T with n nodes, let h be the
height:

1. External nodes of T: at least
h+1 and at most 2^h

2. Internal nodes of T: at least h
and at most 2^h – 1

3. Total number of nodes: at
least 2h + 1 and at most
2^(h+1) – 1

4. Height h is at least log(n+1) –
1 and at most (n-1)/2, that is
log(n+1) – 1 <= h <= (n-1)/2

Binary Tree
9

Inorder: left child, parent, then right child

Recursive:

inorder(v){
inorder(v.leftchild);
visit(v);
inorder(v.rightchild);

}

Binary Tree
10

Iterative:
inorder(v){

stack s;
iterator it;
it = v;
while(it != null){

while(it != null){
if(it.right != null) s.push(it.right);
s.push(it);
it = it.left;

}
it = s.pop();
while(s.size() > 0 && it.right == null){

visit(it);
it = s.pop();

}
visit(it);
it = s.size()>0? s.pop():null;

}

Binary Tree
11

Inorder: H, D, I, B, E, A, J,
F, L, K, M, C, G

Heap
12

Heap
13

 Heap is a realization of priority queue using binary
tree data structure

 A heap has two properties:

 Heap-Order property: A key store at a node v is greater than
that of v’s parent

 Complete Binary Tree: A binary tree T is complete if the levels
0,1….h – 1 has the maximum number of nodes possible

Heap
14

 Insertion: where to insert, perform upheap

 Keep track of the last node

 Case 1: last node is a left child, insert the new value into the
right child

 Case 2: last node is a right child, go up the branch until you
reach a left child, traverse down its right sibling node, traverse
down its left branch until the lowest node is reached, insert the
new value into its left child node

 Case 3: the tree is empty, insert the new value into its root

 Case 4: last node is the right most node, i.e. the last level is
full, insert the new value into a left node starting a new level

Heap
15

Case 1: inserted 8, last node was 11, the ordering is good, no
upheap needed

Heap
16

Case 2: inserted 2, need to perform upheaps until the keys are reordered, 3
upheaps needed

Heap
17

Inserted 2 and reordered

Heap
18

 Removal: remove the key at root, replace root with
key at last node, downheap to reorder the tree

 Case 1: key at r is removed, both children of r are external
nodes, nothing to be done

 Case 2: key at r is removed, left child s of r is an internal node
while right child v is an external node. If key(r) > key(s),
downheap on s until the tree is reordered.

 Case 3: key at r is removed, left child s and right child v are
both internal nodes. Let w be the child node with the smaller
key, if key(r) > key(w), downheap on w until the tree is
reordered.

Heap
19

Remove key 2: replace key at root with key at last node, 20.
Downheap on 4, which is smaller than 5, until tree is reordered.

Heap
20

Downheap on 6 which is smaller than 7.

Heap
21

The tree is reordered

AVL Tree
22

 Binary search tree with a balanced property

 Height-Balance Property: For every internal node v
of T, the heights of the children of v can differ by at
most 1

 Need an algorithm to detect imbalance

AVL Tree
23

 Store the inverse value of the height of the branches
at each node.

 External node has a height value of 0

 Internal node has a value of the height of its longest branch
from the external node

AVL Tree
24

Note: the height value of each node is the maximum value of the
longest branch from the external node

AVL Tree
25

 Insertion and deletion can cause the tree to become
imbalanced

 Need an algorithm to restructure the tree to restore
balance

AVL Tree
26

 4 strategies to restructure the tree

 Case 1: single left rotation

AVL Tree
27

 Case 2: single right rotation

AVL Tree
28

 Case 3: double left rotations

AVL Tree
29

 Case 4: double right rotations

AVL Tree
30

 Need an algorithm to decide where to restructure in
a tree

 Insertion:

 Let x be the node that is inserted. Go up the branch along x
until a node z is detected where z’s subtrees are imbalanced

 Let w be z’s child and v be w’s child along x’s branch.
Restructure w, v, z

AVL Tree
31

Insertion of 4 caused the tree to be imbalanced

AVL Tree
32

Use double right rotation on z, w, v

AVL Tree
33

Balance is restored

AVL Tree
34

 Removal can cause the tree to become imbalance

 Where to restructure:

 Let w be the node removed

 Let z be the first imbalanced node encountered going up from
w

 From z, pick the child y of z that has the highest height value.

 From y, pick the child of x of y that has the highest height
value.

 Restructure z, y, x

AVL Tree
35

 Note: if the children of y has the same height values,
then an arbitrary child can be picked, but multiple
restructurings might be necessary depending on the
choice of x, y, z

AVL Tree
36

Removing 32 causes the tree to become imbalanced

AVL Tree
37

Going up along 32 branch, z is the first node encountered that is
imbalanced, 17 has a value of 1, and 62 has the value of 3. Pick 62 as
y. Since 50 and 78 both have a value of 2, arbitrarily pick 78 as x.

AVL Tree
38

Use single left rotation to restructure x, y, z

