Pl

e

CIS2520 Lab 7

DATA STRUCTURE

Preoder: visit parent before children from left to right

Recursive:
preorder(v){
visit(v)
for each child wof v
preorder(w)

Traversals

Postorder: visit the children first before parent

Recursive:

postorder(v){
for each child w of v
postorder(w)
visit(v)

Q Internal node

External node

Tree T with n nodes, let h be the
height:

1. External nodes of T: at least
h+1 and at most 2”°h

2. Internal nodes of T: at least h
and at most 2h — 1

3. Total number of nodes: at
least 2h + 1 and at most
2”M(h+1) — 1

4. Height h is at least log(n+1) —
1 and at most (n-1)/2, that is
log(n+1) — 1 <=h <= (n-1)/2

Inorder: left child, parent, then right child

Recursive:

inorder(v){
inorder(v.leftchild);
visit(v);
inorder(v.rightchild);

Binary Tree

Binary Tree

Q Internal node

| External node

O Internal node

| External node

Heap

» Heap is a realization of priority queue using binary
tree data structure

» A heap has two properties:

Heap-Order property: A key store at a node v is greater than
that of v’s parent

Complete Binary Tree: A binary tree T is complete if the levels
0,1....h — 1 has the maximum number of nodes possible

Heap

» Insertion: where to insert, perform upheap

» Keep track of the last node

o Case 1: last node is a left child, insert the new value into the
right child

o Case 2: last node is a right child, go up the branch until you
reach a left child, traverse down its right sibling node, traverse
down its left branch until the lowest node is reached, insert the
new value into its left child node

o Case 3: the tree is empty, insert the new value into its root

o Case 4: last node is the right most node, i.e. the last level is
full, insert the new value into a left node starting a new level

Heap

» Removal: remove the key at root, replace root with
key at last node, downheap to reorder the tree

o Case 1: key at r is removed, both children of r are external
nodes, nothing to be done

o Case 2: key at r is removed, left child s of r is an internal node
while right child v is an external node. If key(r) > key(s),
downheap on s until the tree is reordered.

o Case 3: key at r is removed, left child s and right child v are
both internal nodes. Let w be the child node with the smaller

key, if key(r) > key(w), downheap on w until the tree is
reordered.

Binary search tree with a balanced property

Height-Balance Property: For every internal node v
of T, the heights of the children of v can differ by at
most 1

Need an algorithm to detect imbalance

AVL Tree

Insertion and deletion can cause the tree to become
imbalanced

Need an algorithm to restructure the tree to restore
balance

AVL Tree

AVL Tree

AVL Tree

AVL Tree

AVL Tree

AVL Tree

AVL Tree

AVL Tree

AVL Tree

» Removal can cause the tree to become imbalance

» Where to restructure:
o Let w be the node removed

o Let z be the first imbalanced node encountered going up from
w

o From z, pick the child y of z that has the highest height value.

o From y, pick the child of x of y that has the highest height
value.

O Restructure z, y, x

Note: if the children of y has the same height values,
then an arbitrary child can be picked, but multiple

restructurings might be necessary depending on the
choice of x, vy,

AVL Tree

AVL Tree

AVL Tree

