
D A T A S T R U C T U R E

CIS2520 Lab 7

1

Trees
2

 Traversals

 Binary Tree

 Binary Search Tree

 Heap

 AVL Tree

 Assignment 3

Traversals
3

Preoder: visit parent before children from left to right

Recursive:

preorder(v){
visit(v)
for each child w of v

preorder(w)
}

Traversals
4

Iterative:

Preorder(v){
Stack s;
iterator it;
s.push(v);
while(s.size() > 0){

it = s.pop();
visit(it);
for each child w of it from right to left

s.push(w);
}

Traversal
5

Preorder: A, B, E, K, L, F, C, G, H, M, N, D, I, J

Traversals
6

Postorder: visit the children first before parent

Recursive:

postorder(v){
for each child w of v

postorder(w)
visit(v)

}

Traversals
7

Postorder: K, L, E, F, B, G, M, N, H, C, I, J, D, A

Binary Tree
8

Tree T with n nodes, let h be the
height:

1. External nodes of T: at least
h+1 and at most 2^h

2. Internal nodes of T: at least h
and at most 2^h – 1

3. Total number of nodes: at
least 2h + 1 and at most
2^(h+1) – 1

4. Height h is at least log(n+1) –
1 and at most (n-1)/2, that is
log(n+1) – 1 <= h <= (n-1)/2

Binary Tree
9

Inorder: left child, parent, then right child

Recursive:

inorder(v){
inorder(v.leftchild);
visit(v);
inorder(v.rightchild);

}

Binary Tree
10

Iterative:
inorder(v){

stack s;
iterator it;
it = v;
while(it != null){

while(it != null){
if(it.right != null) s.push(it.right);
s.push(it);
it = it.left;

}
it = s.pop();
while(s.size() > 0 && it.right == null){

visit(it);
it = s.pop();

}
visit(it);
it = s.size()>0? s.pop():null;

}

Binary Tree
11

Inorder: H, D, I, B, E, A, J,
F, L, K, M, C, G

Heap
12

Heap
13

 Heap is a realization of priority queue using binary
tree data structure

 A heap has two properties:

 Heap-Order property: A key store at a node v is greater than
that of v’s parent

 Complete Binary Tree: A binary tree T is complete if the levels
0,1….h – 1 has the maximum number of nodes possible

Heap
14

 Insertion: where to insert, perform upheap

 Keep track of the last node

 Case 1: last node is a left child, insert the new value into the
right child

 Case 2: last node is a right child, go up the branch until you
reach a left child, traverse down its right sibling node, traverse
down its left branch until the lowest node is reached, insert the
new value into its left child node

 Case 3: the tree is empty, insert the new value into its root

 Case 4: last node is the right most node, i.e. the last level is
full, insert the new value into a left node starting a new level

Heap
15

Case 1: inserted 8, last node was 11, the ordering is good, no
upheap needed

Heap
16

Case 2: inserted 2, need to perform upheaps until the keys are reordered, 3
upheaps needed

Heap
17

Inserted 2 and reordered

Heap
18

 Removal: remove the key at root, replace root with
key at last node, downheap to reorder the tree

 Case 1: key at r is removed, both children of r are external
nodes, nothing to be done

 Case 2: key at r is removed, left child s of r is an internal node
while right child v is an external node. If key(r) > key(s),
downheap on s until the tree is reordered.

 Case 3: key at r is removed, left child s and right child v are
both internal nodes. Let w be the child node with the smaller
key, if key(r) > key(w), downheap on w until the tree is
reordered.

Heap
19

Remove key 2: replace key at root with key at last node, 20.
Downheap on 4, which is smaller than 5, until tree is reordered.

Heap
20

Downheap on 6 which is smaller than 7.

Heap
21

The tree is reordered

AVL Tree
22

 Binary search tree with a balanced property

 Height-Balance Property: For every internal node v
of T, the heights of the children of v can differ by at
most 1

 Need an algorithm to detect imbalance

AVL Tree
23

 Store the inverse value of the height of the branches
at each node.

 External node has a height value of 0

 Internal node has a value of the height of its longest branch
from the external node

AVL Tree
24

Note: the height value of each node is the maximum value of the
longest branch from the external node

AVL Tree
25

 Insertion and deletion can cause the tree to become
imbalanced

 Need an algorithm to restructure the tree to restore
balance

AVL Tree
26

 4 strategies to restructure the tree

 Case 1: single left rotation

AVL Tree
27

 Case 2: single right rotation

AVL Tree
28

 Case 3: double left rotations

AVL Tree
29

 Case 4: double right rotations

AVL Tree
30

 Need an algorithm to decide where to restructure in
a tree

 Insertion:

 Let x be the node that is inserted. Go up the branch along x
until a node z is detected where z’s subtrees are imbalanced

 Let w be z’s child and v be w’s child along x’s branch.
Restructure w, v, z

AVL Tree
31

Insertion of 4 caused the tree to be imbalanced

AVL Tree
32

Use double right rotation on z, w, v

AVL Tree
33

Balance is restored

AVL Tree
34

 Removal can cause the tree to become imbalance

 Where to restructure:

 Let w be the node removed

 Let z be the first imbalanced node encountered going up from
w

 From z, pick the child y of z that has the highest height value.

 From y, pick the child of x of y that has the highest height
value.

 Restructure z, y, x

AVL Tree
35

 Note: if the children of y has the same height values,
then an arbitrary child can be picked, but multiple
restructurings might be necessary depending on the
choice of x, y, z

AVL Tree
36

Removing 32 causes the tree to become imbalanced

AVL Tree
37

Going up along 32 branch, z is the first node encountered that is
imbalanced, 17 has a value of 1, and 62 has the value of 3. Pick 62 as
y. Since 50 and 78 both have a value of 2, arbitrarily pick 78 as x.

AVL Tree
38

Use single left rotation to restructure x, y, z

