Pl

e

CIS2520 Lab 9

DATA STRUCTURE




Outline







» An edge contains references to a beginning vertex
and an ending vertex
1.e. pointers to two vertex structures

» A vertex contains references to a list of incident
edges

i.e. for a directed graph, a vertex would contains pointers to a
list of incoming edges and a list of outgoing edges



Adjacency lists




Adjacency list




Adjacency matrix




Adjacency matrix




In average cases (sparse edges): adjacency list has
better time complexity, most noticeable:
insertVertex(v): O(1) vs O(n"2)
removeVertex(v): O(deg(v)) vs O(n"2)

Adjacency matrix contains many important

mathematical properties:
Eg. An undirected graph would result in a symmetrical matrix



Search away from the starting position first.

Input: a vertex v in the graph
Output: a labeling of the edges as “discovery” edges and
“back edges”

DFS(v):
for each edge e incident to v do:
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
recursively call DFS(w)
else
label e as a back edge
end



Depth First Search




<
)
i
qe]
D)
N
e
)
=
[y
<
)
oy
<)
-




Search around the starting position first.

Function BFS(s):
initialize container Lo to contain vertex s
1=0
while Li is not empty do
create container Li+1 to initially be empty
for each vertex vin Li do
for each edge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
insert w into Li+1
else
label e as a cross edge
1=1+1
End function



Breadth First Search




Breadth First Search

B——©
Ny 4

® O ¢
I

LG-G- %




Single source

Calculate the shortest paths to all vertices from a
single starting position

Based on Greedy method

Expand based on the one that creates the best solution



ShortestPath(G,v):

Input: a weighted graph G and a vertex vin G

Output: An array label D[u], for each vertex u of G, such that D[u] is the shortest
path from vtouin G

initialize D[v] = 0 and D[u] = +inf for each vertex u # v
let a priority queue Q contain all vertices of G using the D labels as keys
while Q is not empty
u = removeMinElement(Q)
for each vertex z adjacent to u such that zis in Q do
if D[u] + w((u,z)) < D[z] then
D[z] = D[u] + w((u,z))
change to D[z] the key value of z in Q
return the label D[u] of each vertex u



Dijkstra’s algorithm







