
D A T A S T R U C T U R E

CIS2520 Lab 9

1

Outline
2

 Graphs data structures

 Breadth First Seach

 Depth First Search

Graphs
3

 Datastructures for graphs:

 Adjacency lists: list of vertices, list of edges

 Adjacency matrix: matrix of n vertices, edges are represented
by values (1 or 0) on a n x n matrix

Adjacency lists
4

 An edge contains references to a beginning vertex
and an ending vertex

 i.e. pointers to two vertex structures

 A vertex contains references to a list of incident
edges

 i.e. for a directed graph, a vertex would contains pointers to a
list of incoming edges and a list of outgoing edges

Adjacency lists
5

 Example: a digraph G with 3 vertices

 Vertices: A, B, C

 Edges: w, x, y, z

Adjacency list
6

 Structural view

Adjacency matrix
7

 For a graph G with n vertices

 Need array A of pointers with with n x n size to store the
information about edges

Adjacency matrix
8

Performances
9

 In average cases (sparse edges): adjacency list has
better time complexity, most noticeable:

 insertVertex(v): O(1) vs O(n^2)

 removeVertex(v): O(deg(v)) vs O(n^2)

 Adjacency matrix contains many important
mathematical properties:

 Eg. An undirected graph would result in a symmetrical matrix

Depth First Search
10

 Search away from the starting position first.

Input: a vertex v in the graph
Output: a labeling of the edges as “discovery” edges and
“back edges”

DFS(v):
for each edge e incident to v do:

if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then

label e as a discovery edge
recursively call DFS(w)

else
label e as a back edge

end

Depth First Search
11

 Eg. A, B, C, D, E, F, G, H, I

Depth First Search
12

 Spanning forest created from DFS

Breadth First Search
13

 Search around the starting position first.

Function BFS(s):
initialize container L0 to contain vertex s
i = 0
while Li is not empty do

create container Li+1 to initially be empty
for each vertex v in Li do

for each edge e incident on v do
if edge e is unexplored then

let w be the other endpoint of e
if vertex w is unexplored then

label e as a discovery edge
insert w into Li+1

else
label e as a cross edge

i = i +1
End function

Breadth First Search
14

 Eg. A, B, I, H, C, G, D, F, E

Breadth First Search
15

Dijkstra’s Algorithm for Shortest Path
16

 Single source

 Calculate the shortest paths to all vertices from a
single starting position

 Based on Greedy method

 Expand based on the one that creates the best solution

Dijkstra’s algorithm
17

ShortestPath(G,v):
Input: a weighted graph G and a vertex v in G
Output: An array label D[u], for each vertex u of G, such that D[u] is the shortest
path from v to u in G

initialize D[v] = 0 and D[u] = +inf for each vertex u ≠ v
let a priority queue Q contain all vertices of G using the D labels as keys
while Q is not empty

u = removeMinElement(Q)
for each vertex z adjacent to u such that z is in Q do

if D[u] + w((u,z)) < D[z] then
D[z] = D[u] + w((u,z))
change to D[z] the key value of z in Q

return the label D[u] of each vertex u

Dijkstra’s algorithm
18

19

