
A Survey ofTractableConstraint Satisfaction ProblemsJustin Pearson & Peter JeavonsJuly 14, 1997AbstractIn this report we discuss constraint satisfaction problems. Theseare problems in which values must be assigned to a collection of vari-ables, subject to speci�ed constraints. We focus speci�cally on prob-lems in which the domain of possible values for each variable is �nite.The report surveys the various conditions that have been shownto be su�cient to ensure tractability in these problems. These arebroken down into three categories:� Conditions on the overall structure;� Conditions on the nature of the constraints;� Conditions on bounded pieces of the problem.1 IntroductionA constraint satisfaction problem is a way of expressing simultaneous re-quirements for values of variables.The study of constraint satisfaction problems was initiated by Montanariin 1974 [34], when he used them as a way of describing certain combinatorialproblems arising in image-processing. It was quickly realised that the samegeneral framework was applicable to a much wider class of problems, and thegeneral problem has since been intensively studied, both theoretically andexperimentally (for a general introduction see [32]).The following examples indicate the wide variety of problems which canbe viewed as constraint satisfaction problems:1



� A classic example of a problem which is often formulated as a constraintsatisfaction problem is the problem of placing eight queens on a chessboard so that no queen can capture any other queen [40].� A more practical example is the problem of scheduling a collection oftasks or activities. In this problem a list of tasks is given, togetherwith speci�ed constraints on which tasks can be carried out at thesame time, which tasks must precede which others, and so on. Tosolve the problem, it is required to �nd an assignment of times to eachtask which satis�es all of these constraints simultaneously. (A goodintroduction to scheduling as a constraint satisfaction problem can befound in [43].)� Another example of considerable current interest is the frequency as-signment problem. In this problem an arrangement of radio trans-mitters and receivers is given, together with a description of how thesignals from each transmitter propagate to each receiver. To solve theproblem, it is required to �nd an assignment of one (or more) availablefrequencies to each of the transmitters such that, when each transmitterbroadcasts at its assigned frequency, the desired signals can be receivedat each receiver without excessive interference from other, unwanted,signals. Typically, this means that transmitters which are geograph-ically close must be assigned frequencies which are widely separated.The frequency assignment problem can be modelled as a constraintsatisfaction problem in a number of di�erent ways, see [14].� Many classic combinatorial problems, such as the Satisfiability prob-lem from propositional logic [36], the Colorability problem and theGraph Isomorphism problem from graph theory, and the Band-width problem from operational research, can be formulated very nat-urally as constraint satisfaction problems. For a unifying approach toproblems of this type, within the framework of constraint satisfaction,see [25].� The �nal example we mention is the solution of crossword puzzles.This simple application will be used to illustrate the basic frameworkand terminology de�ned in the next section, so we now introduce aparticular crossword puzzle that will be used as a running example:Example 1.1 A typical crossword puzzle is speci�ed by two things: agrid, as shown in Figure 1, and a set of clues.2
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 5  6  7

 8

 9  10  11Figure 1: A crossword gridFor our purposes, we shall think of each clue as a constraint, whichspeci�es the allowed words for a particular set of empty spaces in thegrid. (To make the description of the constraints easier we have num-bered each empty square in the grid.) For example, the clue for `1Down' might allow as possible words \ELIA", \PAUL", and \SAFE",while the clue for `2 Across' might allow as possible words \APES" and\FAIR". 2A solution to a constraint satisfaction problem is an assignment of valuesto all of the variables in the problem which does not violate any of theconstraints.Finding a solution to a constraint satisfaction problem by a simple-mindedsearch, which goes through all possible assignments and checks each one tosee if it satis�es the constraints, is generally impractical. The maximumtime taken to complete this procedure grows exponentially with the numberof variables.In this report we shall describe a number of special cases where it can beshown that there is a much more e�cient algorithm for �nding a solution.The structure of the report is as follows.� In Section 2, we give a formal de�nition of a constraint satisfactionproblem, illustrate this de�nition with a number of examples, and de-scribe the close connections between constraint satisfaction problemsand relational databases.� In Section 3. we show how certain restrictions on the overall structure ofa problem can be used to obtain e�cient solution algorithms of variouskinds.� In Section 4. we show how certain restrictions on the form of con-straints used in a problem can also be used to obtain e�cient solution3



algorithms of various kinds.� In Section 5. we show how certain restrictions on bounded sub-partsof a problem can ensure that the complete problem is easy to solve.� Finally, in Section 6. we summarise the results presented and identifysome directions for future research.
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2 Constraint Satisfaction Problems2.1 Basic de�nitionsThis section de�nes the framework we shall use for expressing constraintsatisfaction problems. A formal framework is necessary in order to allow aprecise analysis of the e�ciency of algorithms for �nding solutions, which isthe main purpose of this report.We shall only consider constraint satisfaction problems in which there area �nite number of variables, and each variable has a �nite number of possiblevalues. These are de�ned as follows.De�nition 2.1 A constraint satisfaction problem, P, is speci�ed by a tuple,P = (V;D;R1(S1); : : : ; Rn(Sn))where� V is a �nite set of variables;� D is a �nite set of values (this set is called the domain of P);� Each pair Ri(Si) is a constraint.In each constraint, Ri(Si),{ Si is an ordered list of ki variables, called the constraint scope;{ Ri is a relation1 over D of arity ki, called the constraint relation.De�nition 2.2 A solution to P = (V;D;R1(S1); : : : ; Rn(Sn)) is an assign-ment of values from D to each of the variables in V , which satis�es all of theconstraints simultaneously.Formally, a solution is a map h : V ! D such that h(Si) 2 Ri, for alli, where the expression h(Si) denotes the result of applying h to the tupleSi, coordinate-wise (in other words, if Si = hv1; v2; : : : ; vki, then h(Si) =hh(v1); h(v2); : : : h(vk)i).The set of all solutions to a problem P will be denoted Sol(P). Two problemswith the same set of solutions will be said to be equivalent.1A relation is simply a set of tuples of some �xed length. The length of the tuples iscalled the arity of the relation. 5



Example 2.3 We will now construct a simple constraint satisfaction prob-lem with variables V = fx; y; zg and domain D = f1; 2; : : : ; 6g (i.e., thenatural numbers from 1 to 6).Suppose we want to express the requirements that the sum of x and ymust be 6, and that the product of y and z must be at least 20. This can bedone with the constraints R1(hx; yi) and R2(hy; zi) where:� R1 = fh1; 5i; h2; 4i; h3; 3i; h4; 2i; h5; 1ig� R2 = fh4; 5i; h4; 6i; h5; 4i; h5; 5i; h5; 6i; h6; 4i; h6; 5i; h6; 6igThe solutions to this problem can be calculated by hand. For example, themap f(x) = 1f(y) = 5f(z) = 4is a solution, because f(hx; yi) = h1; 5i, which is in R1, and f(hy; zi) = h5; 4i,which is in R2.The complete set of solutions isfh1; 5; 4i; h1; 5; 5i; h1; 5; 6i; h2; 4; 5i; h2; 4; 6ig;where a triple in the solution de�nes the values assigned to x; y and z, re-spectively. 2Example 2.4 One way to formalise crossword puzzles is to de�ne a variablefor each empty square in the grid, and set the domain D to be the set of allalphabetic letters. We can then associate with each clue in the crossword aconstraint, giving allowed words for the corresponding squares.The crossword puzzle described in Example 1.1 has 12 empty squares, so itwould be represented by a constraint satisfaction problem with 12 variables.It contains 4 words, and hence has 4 clues, so we would de�ne 4 constraintsR1(S1); : : : ; R4(S4) where, for example, we might have:� S1 = h1; 2; 3; 4i,� S2 = h2; 5; 6; 7i,� S3 = h7; 8; 11i,� S4 = h4; 9; 10; 11; 12i, 6



with� R1 = fhE,L,I,Ai; hP,A,U,Li; hS,A,F,Eig ,� R2 = fhA,P,E,Si; hF,A,I,Rig, and so on.Note, it is perfectly possible to represent the same constraint with a di�erentordering of the variables. For example, the constraint R2(S2) de�ned abovecould be represented as the constraint R02(S 02) where:� S 02 = h5; 6; 2; 7i� R02 = fhP,E,A,Si; hA,I,F,Rigwithout changing the solutions to the constraint, or to the overall problem.2We will occasionally make use of the notion of a partial solution. This maybe de�ned in a number of di�erent ways, depending on the stringency of therequirements which we wish to impose. For consistency with the majority ofthe literature, we shall use the following de�nition.De�nition 2.5 A partial solution to a constraint satisfaction problem P =(V;D;R1(S1); : : : ; Rn(Sn)) is a mapping h from some subset, say W , of V toD, such that for each Si contained in W , h(Si) 2 Ri.Example 2.6 A partial solution to the crossword puzzle described in Exam-ple 1.1 is shown in Figure 2. This partial solution satis�es all the constraintson complete words where all letters have been assigned. Notice, however,that it is unlikely to be extendible to a complete solution because of theletters assigned to squares 8 and 12. 2
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2.2 Links with Relational Database theoryTo further illustrate the de�nitions we have given, we now say a little aboutthe close connections between constraint satisfaction problems and relationaldatabases.It is very valuable to be aware of these links, because relational databasetheory provides a rich body of concepts and techniques which can be appliedto constraint satisfaction problems. In particular, the use of relational al-gebra [7], which is a well-established tool in database theory, allows manyproperties and algorithms used in the study of constraint satisfaction to beexpressed in a concise and elegant way.De�nition 2.7 ([7]) A relational database is a �nite collection of tables2.A table consists of a scheme and an instance:� A scheme is a �nite set of attributes, where each attribute has an as-sociated set of possible values, referred to as a domain.� An instance is a �nite set of rows, where each row is a mapping thatassociates with each attribute of the scheme a value in its domain.Relational database theory [41] has at least two central concerns: the e�cientstorage of tables, and the expressibility and e�ciency of queries. A query isa request for information from some collection of tables. For example, ifone table stores names and addresses, and another table stores names andsalaries, then a query might ask for the salaries of people who live in a certainarea.Various standard operations have been de�ned on tables, which allowmany queries to be expressed, and these operations are collectively known asthe relational algebra [7]. We will only make use of two of these operations:projection and join, which are de�ned as follows.De�nition 2.8 Given a table T with set of attributes I, and a subset J of I,the projection of T onto J , denoted �JT , is the table with set of attributesJ and the following set of rows:ffjJ j f 2 Tgwhere fjJ denotes the function f restricted to the arguments in J . That is,each row of �JT is a restriction of some row in T , containing values forattributes in J only.2Tables are often referred to as relations. We will call them tables to avoid clashingwith the set-theoretic de�nition of a relation used above.8



De�nition 2.9 Given a table T with set of attributes I, and a table S withset of attributes J , the join of T and S, denoted T ./ S, is de�ned to be thetable with set of attributes I [ J and the following set of rows:ff j fjI 2 T and fjJ 2 SgExample 2.10 Here is an example of a table, which we shall call PayRoll:Name Salary AgeFred 30,000 32Susan 35,000 37Jim 25,000 27Sheila 35,000 37The scheme of this table has three attributes, Name, Age and Salary, (eachwith an appropriate domain of possible values), and the instance has fourrows.The query �Age,Salary PayRoll gives the table:Age Salary32 30,00037 35,00027 25,000(Note that a table is a set, which means that it cannot have duplicate rows,so any duplicates rows arising from the projection are eliminated.)Now assume that our database also contains a second table, which weshall call Addresses: Name AddressDylan Cwmdonkin DriveJim Eton TerraceSheila Seaview GardensThe query which asks for the join of these two tables, written asPayRoll ./ Addresses;gives the following table:Name Age Salary AddressJim 27 25,000 Eton TerraceSheila 37 35,000 Seaview Gardens 29



The very close connection between constraint satisfaction problems and databasesis indicated in the following table:Constraint Terminology Database Terminologyconstraint satisfaction problem � databasevariable � attributedomain � union of all attribute domainsconstraint � tableconstraint scope � schemeconstraint relation � instanceset of solutions � join of all tablesIn summary, a constraint satisfaction problem P = (V;D;R1(S1); : : : ; Rn; (Sn))can be seen as a relational database with n tables, having schemes S1; : : : ; Snand instances R1; : : : ; Rn . The set Sol(P) is equal to the tableR1 ./ R2 ./ � � � ./ Rn:For further discussion of the important and fruitful connection between thesetwo �elds, see [23].2.3 The complexity of �nding solutionsMany techniques have been developed over the past 20 years to �nd solutionsto constraint satisfaction problems (for a general introduction to solutionmethods for constraint satisfaction problems, see [40, 32]).One obvious approach is to employ some form of backtrack search algo-rithm. This simple form of search algorithm may be speci�ed as follows:Algorithm 2.111. Pick some ordering of the variables, say, v1; v2; : : : ; vjV j;2. Pick some ordering of the domain, say d1; : : : ; djDj;3. Call Backtrack(1).Backtrack(i)If i > jV j, then output the current assignment;else for j = 1; 2; : : : ; jDjAssign the value dj to variable vi.If the current assignment of v1; v2; : : : ; vi is a partial solution,then call Backtrack(i+ 1);10



Many improvements to the standard backtrack search have been describedin the literature (for a recent survey, see [31]). These all attempt to speed upthe basic algorithm by using extra information about the problem to guidethe search more e�ectively, hence making fewer unnecessary assignments,and backtracking less often.The maximum time taken to �nd a solution by any form of backtracksearch (or to establish that no solution exists) grows exponentially with thenumber of variables, in general. However, for any particular problem instancethe time required to �nd a single solution depends on� the details of the given problem;� the chosen variable ordering;� the chosen domain ordering.In some cases, a search procedure can �nd a solution without backtracking atall, and hence the time taken is only proportional to the number of variables.In order to analyse more precisely the computational di�culty of �ndingsolutions to constraint satisfaction problems, we shall make use of some ofthe techniques and terminology of computational complexity theory.In particular, we shall attempt to determine the time complexity3 of var-ious restricted classes of constraint satisfaction problems. (For a generalintroduction to complexity theory, see [22] or [36].)The main results we shall describe show that, for certain special types ofproblems, it is possible to design algorithms which will always �nd a solutione�ciently (or discover that there are no solutions). A class of problemswill be called tractable if there is an algorithm which �nds a solution to allproblems in that class, or reports that there are no solutions, and whose timecomplexity is polynomial in the size of the problem to be solved. The restof this report lists a wide variety of conditions which are su�cient to ensuretractability, in this sense.On the other side of the coin, it is sometimes possible to show that aclass of problems is very unlikely to be tractable. In several cases, we shallestablish that a particular class of constraint satisfaction problems is NP-complete [22]. To do this we show that any algorithm which could solve allthe problems in this class in polynomial time would also allow us to solve somewell-established di�cult problems, such as Graph Colorability [36], inpolynomial-time. If a class of problems is NP-complete, then this provides3The time complexity of any collection of problem instances is a function which givesthe maximum time taken by some �xed algorithm that solves any member of that class,for each possible instance size. 11



very good evidence that any algorithm for solving such a class is likely torequire exponential time to complete (for at least some cases). We are there-fore unlikely to be able to solve all large instances of problems in that classwithin a reasonable length of time.3 Tractability due to restricted structure3.1 De�ning problem structureIn the following subsections we shall review some results concerning thetractability of problems with restricted structure.First, we need to de�ne some terminology for describing the structure ofa constraint satisfaction problem. With any constraint satisfaction problemP, we will associate a mathematical structure, known as a hypergraph, whichcaptures how the variables of the problem are related. (A hypergraph is ageneralisation of the more familiar concept of a graph, as described below.).De�nition 3.1 ([5]) A hypergraph is a pair (V;E), where V is a set ofvertices, and E is a set of edges. Each edge is a (non-empty) subset of V .In the special case where each edge contains exactly two vertices, we normallyrefer to the hypergraph as a graph. A constraint satisfaction problem whereall the constraints are binary can be naturally associated with a graph, wherethe vertices of the graph are the variables of the problem, and there is anedge in the graph linking vertices v1 and v2 exactly when there is someconstraint Ri(Si) with scope Si = hv1; v2i. This graph is often referred to asthe constraint graph of the problem [13].More generally, an arbitrary constraint satisfaction problem, with con-straints of any arity, can be associated with a hypergraph, where the verticesof the hypergraph are the variables of the problem, and there is an edge con-taining v1; v2; : : : ; vk exactly when there is some constraint Ri(Si) with scopeSi = hv1; v2; : : : ; vki.Example 3.2 The hypergraph associated with the constraint satisfactionproblem described in Example 2.3 is(fx; y; zg; ffx; yg; fy; zg);which may be represented pictorially as in Figure 3. 2Example 3.3 The hypergraph associated with the constraint satisfactionproblem described in Example 2.4 is(f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g; ff1; 2; 3; 4g; f4; 9; 10; 11; 12g; f2; 5; 6; 7g; f7; 8; 11gg);12
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which may be represented pictorially as in Figure 4 2It is important to remember that the existence of an edge in an associatedgraph or hypergraph only records the fact that the values assigned to certainvariables are required to be related by some constraint relation. The hyper-graph gives no information about which particular relation must be satis�edby the values assigned to those variables.However, we shall now show that, if the associated graph or hypergraphis restricted in certain ways, then the corresponding problems are tractable,whatever constraint relations may be speci�ed.3.2 TreesThe �rst restricted class of hypergraphs that we shall consider is the class of(generalised) trees.We give a de�nition of trees which can be applied to arbitrary hypergraphsas well as to graphs. This de�nition makes use of the the notion of a chain [5],which is simply a list of distinct vertices with connecting edges.De�nition 3.4 ([5]) A chain of length q in a hypergraph (V;E) is de�nedto be a sequence (x1; E1; x2; E2; : : : ; Eq; xq+1) such that:� x1; x2; : : : ; xq are all distinct vertices from V ;� E1; : : : ; Eq are distinct edges from E;� xk; xk+1 2 Ek for k = 1; 2; : : : ; q.A chain of length greater than 1 is said to be cyclic if x1 = xq+1.A hypergraph is said to be a tree if it contains no cyclic chains.The following result was established by Montanari, in the very �rst paperto deal explicitly with constraint satisfaction problems [34]. It was laterobtained by Freuder [19], as a special case of a much more general result, tobe discussed below (Section 3.4).Theorem 3.5 ([34, 19]) Let Ctree be the class of all binary constraint sat-isfaction problems for which the associated constraint graph is a tree.Ctree is tractable.In other words, there is a polynomial-time algorithm which solves any binaryconstraint problem for which the associated graph is a tree, regardless of theconstraint relations. 14



To prove Theorem 3.5 we need to establish that there is an e�cient algo-rithm which can solve any tree-structured problem.The algorithm we shall describe deals with both binary and non-binaryproblems. It has three stages. In the �rst stage it chooses a particularordering of the edges, in the second stage it tightens the constraints, andin the third stage it constructs an assignment, by assigning values to thevariables of each edge in turn.Algorithm 3.6Input: A constraint satisfaction problem P whose associated hypergraph Gis a tree;Output: A solution to P (or a signal that there are no solutions).Stage 1: While G contains any edges, do the following:1. Remove all vertices in G which belong to only one edge (such avertex exists because all chains in G must terminate, since G is atree).2. Remove all edges which are now empty, or completely contained inanother edge, and add these edges to the ordering (in any order).Stage 2: Assume that the list of edges in the chosen edge ordering is e1; : : : ; en,and let R1(S1); R2(S2); : : : ; Rn(Sn) be the corresponding constraints ofP.For each i in the range 1; 2; : : : ; n, and each j > i, replace the constraintRj(Sj) with the constraint R0j(Sj), whereR0j = �Sj(Ri ./ Rj)If any of the resulting constraints are empty, then terminate and signalthat P has no solutions;Stage 3: For i = n; n�1; : : : ; 1, assign values to the variables whose associ-ated vertices lie in en; en�1; : : : ; ei, such that the assignment obtained ateach step extends the assignment at the previous step, and is a partialsolution.At no point in Stage 3 does the algorithm need to backtrack and undo anyprevious assignment. This is because, at each step in the assignment of valuesto the variables, all the possible choices of assignment extend to some possible15



choice of values for the variables introduced at the next step, otherwise thatchoice of values would be removed in Stage 2.In fact, it is easy to see that Algorithm 3.6 works for a wider class ofhypergraphs than trees. Any hypergraph where the set of edges can be totallyordered, by Stage 1 of Algorithm 3.6, will be solved correctly by the rest ofthe Algorithm, without backtracking. Any hypergraph for which Stage 1 ofAlgorithm 3.6 can successfully order the complete set of edges is referred toas acyclic [16]. We can therefore generalise Theorem 3.5, as follows.Theorem 3.7 Let Cacyclic be the class of all constraint satisfaction prob-lems for which the associated hypergraph is acyclic.Cacyclic is tractable.(This generalisation was pointed out in [13].)The technique of successively removing edges in the way we have de-scribed, in order to determine whether or not a hypergraph is acyclic, isreferred to as GYO reduction [41]. Many other characterisations of acyclichypergraphs have been identi�ed [16], and we shall give another useful char-acterisation in the next section. The desirable properties of such hypergraphsare well-known in relational database theory [4].Acyclic hypergraphs include the class of generalised trees de�ned above,but for non-binary hypergraphs they represent a signi�cant generalisation ofthis class, as the next example illustrates.Example 3.8 The hypergraph illustrated in Figure 5 is acyclic, but it isnot a tree (removing the edge represented by the heavy line leaves a cyclicchain). 2In order to obtain even larger tractable classes we need to further generalisethe ideas described in this section. This has been done in two essentiallydi�erent ways, which will be described in the next two sections.3.3 Decomposing problemsIf we have a constraint satisfaction problem with an associated hypergraphthat breaks up into two separate disconnected components, as illustratedin Figure 6, then it is clear that each of these components can be solvedindependently. In fact, even if the two parts of the problem share an edge incommon, as shown in Figure 7, then after solving one part, information canbe carried forth into the second part which can be used to solve that part ofthe problem in a compatible way. 16



Figure 5: An acyclic hypergraph
Figure 6: A disconnected hypergraph

Figure 7: A hypergraph with limited connectivity17



The idea of decomposing a problem into smaller pieces with limited in-terconnections, which can be solved separately, was �rst explored by Freuderin [20]. Freuder showed that binary constraint satisfaction problems can bedecomposed into smaller problems corresponding to the biconnected compo-nents [5] of the associated graph.The idea was extended, and generalised to hypergraphs, by Gyssens etal. [23], who introduced the notion of hinges as the fundamental buildingblocks of any graph or hypergraph. Using this idea allows us to identifya much wider class of tractable hypergraphs than the acyclic hypergraphsdiscussed in Section 3.2.To describe these ideas, we �rst de�ne precisely what it means for a setof edges in a hypergraph to be connected.De�nition 3.9 For any hypergraph (V;E), and any subset of edges F � E,we say that F is connected if for any two edges, e; f 2 F , there exists asequence of edges e1; : : : ; en, with� e1 = e;� en = f ;� for i = 1; 2; : : : ; n, ei \ ei+1 6= ;.We refer to a subset F � E as a maximal connected component if it isa connected subset, and there is no larger connected subset containing it.The hypergraph shown in Figure 6 has two maximal connected components,and the hypergraph shown in Figure 7 has only one maximal connectedcomponent.We now re�ne the notion of connectedness, to allow us to identify collec-tions of edges which separate others.De�nition 3.10 For any hypergraph (V;E), any subset of edges H � E,and any subset of edges F � E, we say that F is connected with respect toH if for any two edges, e; f 2 F , there exists a sequence of edges e1; : : : ; en,with� e1 = e;� en = f ;� for i = 1; 2; : : : ; n, eI \ ei+1 6� SH.(Note that SH is the set of all vertices which occur within the edges in theset H.) 18



Now we are in a position to de�ne a hinge of a hypergraph. Informally, ahinge is a set of at least two edges which cuts the hypergraph into separateconnected components such that each connected component intersects withthe hinge within only one edge. The precise de�nition is as follows.De�nition 3.11 ([24, 23]) Let (V;E) be a hypergraph, H � E be a set ofat least two edges, and H1; : : : ;Hn be the connected components of (V;E)with respect to H. We shall say that H is a hinge if, for i = 1; : : : ; n, thereexists an edge hi 2 H such that:([Hi) \ ([H) � hiExample 3.12 �� ��'&�� �	�	 �� ��� ��� �uu u uuu u uuu '& $%'& $%�� ��
Figure 8: A hypergraphConsider the hypergraph illustrated in Figure 8. Figures 9 and 10 show twoof the hinges contained in this hypergraph. 2uu u uuu�� ��'& $%'& $%�� ��

Figure 9: A hinge of Figure 819
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Figure 10: Another hinge of Figure 8A minimal hinge is a hinge that does not contain any other hinges. It isshown in [23] that that the minimal hinges of a hypergraph are fundamentalstructural components. In particular, any hypergraph can be decomposedinto a collection of minimal hinges, which overlap each other in a tree struc-ture. This structure is referred to as a hinge-tree, and is de�ned as follows.De�nition 3.13 ([23]) A hinge-tree of a hypergraph (V;E) is a tree (N;A)with the following properties:� each tree node, n 2 N , is a minimal hinge of (V;E);� each edge of the hypergraph is contained in at least one tree node(i.e. SN = E);� adjacent tree nodes share exactly one edge of the hypergraph;� the vertices shared by any two tree nodes are entirely contained withineach tree node on their connecting path in the tree.Example 3.14 Figure 11 shows one possible hinge-tree for the hypergraphdescribed in Example 3.12, and illustrated in Figure 8. 2It is possible to calculate a hinge-tree for any given hypergraph in a timewhich is polynomial in the size of that hypergraph [23].For any given hypergraph there may be more than one hinge-tree, andthey may contain di�erent minimal hinges, but it is shown in [23, 26] thatthey all have an important feature in common.Theorem 3.15 ([23, 26]) For any hypergraph (V;E), there is a number,�, called the degree of cyclicity, such that, in all hinge-trees of (V;E), thelargest node has exactly � edges. 20
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s ss#" !�� ��sFigure 11: A possible hinge tree of Figure 8If the degree of cyclicity of a hypergraph is 2, then the hypergraph is acyclic [26]4.For any constraint satisfaction problem, any corresponding hinge-treecan be used to obtain a new constraint satisfaction problem, which has thesame solutions as the original problem, but whose associated hypergraph isacyclic [23]. To construct this equivalent problem one simply solves eachof the constraint satisfaction problems associated with each of the hinges inthe hinge-tree, and replaces that hinge with a single constraint relation, con-sisting of the set of solutions5. The resulting acyclic constraint satisfactionproblem can then be solved in polynomial time, as described in Section 3.2.If the degree of cyclicity is small, then each minimal hinge in the hinge-tree will be small (i.e., will contain a small number of edges), so each of thecorresponding constraint satisfaction problems will be small, and hence thecost of solving each of them separately and constructing the equivalent tree-structured constraint satisfaction problem will be small. In general, the timecomplexity of constructing a hinge-tree, then constructing the correspondingtree-structured problem, and then solving that, is:O(jV jn2) + O(nl��logl)4This de�nition of acyclic hypergraphs has been shown to be equivalent [24] to themore standard de�nitions, given in, for example, [4, 16]5This procedure is equivalent to the `perfect relaxation' strategy described in [35]21



where V is the set of variables of the problem,n is the number of constraints,l is the size of the largest constraint (number of tuples), and � is the degreeof cyclicity [23].It follows from this that, if the degree of cyclicity is �xed, then we havea polynomial-time algorithm for the corresponding constraint satisfactionproblems.Theorem 3.16 ([23]) For any �xed value of �, the class of constraint sat-isfaction problems whose associated hypergraphs have degree of cyclicity atmost � is tractable.The class of hypergraphs with degree of cyclicity at most �, for some �xed �,is much larger than the class of acyclic hypergraphs, but problems associatedwith these hypergraphs still remain tractable. Therefore the class of tractableconstraint satisfaction problems is much larger than would be expected fromthe results in Section 3.2.Unfortunately, for many hypergraphs (for example, Figure 4) the degreeof cyclicity is the same as (or close to) the number of edges in the hypergraph.When this is the case it can be shown that the hypergraph cannot, in general,be decomposed into smaller units which can be solved separately, regardlessof the constraint relations [23].However, as we remarked earlier, the degree of cyclicity of a hypergraphcan be determined in polynomial time [23], so the hinge-tree decompositiontechnique can always be used as a �rst step on a given problem withoutsacri�cing e�ciency6.Another approach to decomposing constraint satisfaction problems is de-scribed in [13]. This approach involves forming subproblems from clusters ofvariables and then solving these subproblems separately. For many problemsthis clustering approach results in a �ner decomposition than the hinge-treemethod described here, and hence this approach can be very useful in prac-tice. On the other hand, it is not clear how to obtain a tight bound on thesize of the clusters which are formed in this technique. Hence this cluster-ing approach does not lead to the speci�cation of tractable problem classeswhose members can be e�ciently identi�ed. (For a comparison between thetwo approaches, and suggestions on how to combine them, see [23].)6A direct comparison between the notion of degree of cyclicity and the notion of width(described in Section 3.4) is problematic, because the �rst is de�ned in terms of thenumber of edges and the second is de�ned in terms of the number of vertices. For arbitraryhypergraphs there may be arbitrary numbers of vertices in an edge. We therefore claimthat both measures may be useful in di�erent contexts22



3.4 Consistency and backtrack-free searchOne of the key concepts which has been applied to the study of constraintsatisfaction problems is the concept of consistency. In this section, we shallde�ne this concept, and then examine how it may be used to identify tractableproblem classes.The basic insight behind the notion of consistency is that much of theinformation in a constraint satisfaction problem is present only implicitly.This information may be discovered during the course of a search, for exam-ple, when certain combinations of values are found to be disallowed by somecollection of constraints, and the search is forced to backtrack. It may bepossible to guide a search procedure more e�ectively, and hence �nd a solu-tion more quickly, if this implicit information is made explicit. This can bedone by adding additional constraints to the problem, as described below7.We now de�ne various forms of consistency which have been widely-usedin the literature.De�nition 3.17 ([18]) A problem is said to be k-consistent if every partialsolution on any set of k�1 variables can be extended to a partial solution onany superset containing k variables.A problem is said to be strong k-consistent if it is i-consistent for i =1 : : : k.A problem is said to be globally consistent if any partial solution can beextended to a full solution.The maximal value of k for which k-consistency holds is referred to as thelevel of consistency present in a problem.Any constraint satisfaction problem can be made k-consistent for any�xed k in polynomial time, by the addition of extra constraints. For eachvariable v, simply add new constraints on each subset of k � 1 variables toensure that all of the allowed combinations of values for these variables areconsistent with some assignment of v. The required constraint relations canbe constructed from the constraint relations in the original problem using acombination of join and projection operators. (For a more detailed analysisof e�cient algorithms which can modify a problem to ensure k-consistencysee [10, 11].)The earliest results concerning consistency and tractability were obtainedby Freuder [19]. These results give conditions on a constraint graph that7There is a useful analogy between the process of adding or modifying constraintsbased on implicit information and the presolve process used in most commercial linearprogramming systems to pre-process the problem formulation [6]23



guarantee e�cient backtrack search when the problem has a certain level ofstrong consistency.Freuder's central result relies on the notion of width, which is well-establishedin graph theory (although less commonly applied to hypergraphs). Intu-itively, in any hypergraph where the vertices are arranged in some order, thewidth of a vertex is the number of earlier vertices to which it is connected.De�nition 3.18 Given a hypergraph (V;E), and an ordering v on V , thewidth of a vertex v is the size of the set:fw j w v v and 9e 2 E; fv;wg � egThe width of the ordering is the maximum width over all the vertices.The width of the hypergraph (V;E) is the minimum width over all possibleorderings of V .Example 3.19 Consider the hypergraph illustrated in Figure 4, with thevertex ordering1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12:A straightforward check shows that:� the width of vertex 11 is 5;� there is no other vertex which has width greater than 5 in this ordering,so the width of this ordering is 5.Now consider the same hypergraph, with the vertex ordering2 v 7 v 4 v 11 v 1 v 3 v 5 v 6 v 8 v 9 v 10 v 12:A straightforward check shows that:� the width of vertex 12 is 4;� there is no other vertex which has width greater than 4 in this ordering,so the width of this ordering is 4.� there is no other ordering which has width less than 4, so the width ofthis hypergraph is 4. 224



Theorem 3.20 ([19]) Let P be a constraint satisfaction problem, let (V;E)be its associated hypergraph, and let v be an ordering of V with width w.If P is strong (w+1)-consistent, then a solution to P can be obtained byperforming a backtrack-free search using this variable ordering.A proof of this theorem, for the special case of binary constraint satisfactionproblems, is given in [19]. The generalisation to problems of arbitrary arityis straightforward. Intuitively, the result is obtained because at each stepwhich assigns a value to a variable the number of previously assigned valueswhich need to be taken into account is at most the width of the ordering.Hence, if the level of consistency is greater than the width of the ordering,then the partial assignments can be extended at each step, and the searchwill proceed without backtracking.Theorem 3.20 can be generalised to allow a weaker form of consistency,known as directional consistency [12]. In fact, many of the results concerningconsistency which appear in the literature can be generalised in this way, butthis idea will not be explored further in this report.One di�culty with applying Theorem 3.20, is that, in general, �nding aminimal width ordering of a graph or hypergraph is an NP-complete prob-lem [2, 22]. However, there are heuristic approaches which obtain an order-ing whose width is a good approximation to the hypergraph width in manycases [13].It has been shown [1] that the width of any graph can be characterisedin terms of a generalised form of tree-structure, known as a k-tree, which isde�ned as follows. First note that a k-clique in a graph is a set of k vertices,such that there is an edge containing each pair.De�nition 3.21 ([1]) A k-tree is de�ned recursively as follows:� A k-clique is a k-tree.� Any graph obtained by adding an extra vertex to an existing k-tree, andedges from this vertex to all the vertices of some existing k-clique, is ak-tree.A graph has width less than or equal to k if and only if it is a subgraph ofa k-tree [1]. In particular, a graph has width 1 if and only if it is a tree,as de�ned in Section 3.2. Hence, the results in this section can be seen asa generalisation of the results for trees, above (see [21]). In fact, for binaryproblems whose associated graph is a tree, Theorem 3.20 shows that all that isrequired to ensure backtrack-free search is strong 2-consistency. (For binaryproblems, the algorithm described in Section 3.2 essentially �nds a minimalwidth ordering (in reverse!) and then enforces a weak form of 2-consistency.)25



4 Tractability due to restricted constraints4.1 Closure, clones and complexityThe characterisations of tractable constraint satisfaction problems that wehave discussed so far have been in terms of the structure of the associatedhypergraph. We now investigate properties of the constraint relations whichare su�cient to ensure tractability, regardless of the associated hypergraph.It turns out that the relevant properties of relations are algebraic closureproperties, which are de�ned as follows.De�nition 4.1 Given a k-ary relation R and a function � : Dn ! D, wesay that R is closed under �, if for all collections of tuples,hd11; d12; : : : ; d1ki 2 Rhd21; d22; : : : ; d2ki 2 R...hdn1 ; dn2 ; : : : ; dnk i 2 Rthe tuple h�(d11; d21; : : : dn1 ); �(d12; : : : ; dn2 ); : : : ; �(d1k; : : : dnk )ialso belongs to R.Example 4.2 The relationR2 = fh4; 5i; h4; 6i; h5; 4i; h5; 5i; h5; 6i; h6; 4i; h6; 5i; h6; 6igwhich was introduced in Example 2.3 is closed under the binary operationmax, which returns the maximum value of its two arguments. For example,max(h4; 5i; h6; 4i) = hmax(4; 6);max(5; 4)i = h6; 5i 2 R2:On the other hand, the relationR1 = fh1; 5i; h2; 4i; h3; 3i; h4; 2i; h5; 1ig;also introduced in Example 2.3, is not closed under this operation. Forexample, max(h1; 5i; h5; 1i) = hmax(1; 5);max(5; 1)i = h5; 5i 62 R2: 226



We note that when a relation is closed under an operation, then any projec-tion of that relation is also closed under that operation. Furthermore, thejoin of any two relations closed under an operation is also closed under thatoperation [27].Throughout this section we shall assume that � is a set of relations overa �nite set D with at least two elements.Notation 4.3� The class of all constraint satisfaction problems in which the constraintrelations are members of � will be denoted C�.� The set of all functions � : Dn ! D, for arbitrary values of k, underwhich every member of � is closed, will be denoted Fun(�).The following result was recently established by Jeavons [25].Theorem 4.4 ([25]) The complexity of C� is determined by Fun(�).For any set of relations �, the set of functions Fun(�) has certain algebraicproperties which mean that this set is a clone [9, 39]. There are very generalalgebraic results about clones [39, 37] which show that the possibilities forFun(�) are therefore limited in certain ways, as the next result indicates.Theorem 4.5 ([28]) For any set of relations, �, over a �nite set D, the setFun(�) must contain at least one of the following six types of functions:1. A constant function;2. An idempotent binary function, that is, a function �, of arity 2 suchthat �(d; d) = d, for all d 2 D;3. Amajority function, that is, a function �, of arity 3 such that �(d; d; d0) =�(d; d0; d) = �(d0; d; d) = d, for all d; d0 2 D;4. An a�ne function, that is, a function � ,of arity 3 such that �(d1; d2; d3) =d1� d2+ d3, for all d1; d2; d3 2 D, where + is a binary operation on Dthat gives D an Abelian group structure;5. A semiprojection, that is, a function � of arity n > 3, such that�(d1; : : : ; dn) = di for some i, for all d1; : : : ; dn 2 D with jfd1; d2; : : : ; dngj <n;6. An essentially unary function, that is, a function � of arity n such that�(d1; : : : ; dn) = f(di) for some i and some non-constant unary functionf , for all d1; : : : ; dn 2 D. 27



By examining each of these possibilities in turn, it is possible to obtain analmost complete classi�cation of the complexity of C�, for any given set ofrelations �.In the following sections we shall examine each part of Theorem 4.5 in alittle more detail, to illustrate the various kinds of tractable problems whichhave been identi�ed using these techniques, and the algorithms which solvethese problems e�ciently.4.2 Constant functionsThe �rst case we examine is rather trivial, but introduces the avour of therest of the results.Theorem 4.6 ([28]) If the set Fun(�) contains a constant operation, thenC� is tractable, and can be solved in constant space.Proof: Suppose Fun(�) contains the constant function �, which alwaysreturns the value d. Let P be any constraint satisfaction problem in C�. Ifany of the constraint relations used in P are empty, then the problem has nosolution. Otherwise, because each of these relations is closed under �, eachconstraint relation contains a tuple hd; d; : : : ; di. Assigning d to each variablewill therefore be a solution.4.3 Majority functions and near-unanimity functionsIt was �rst shown in [27] that if a set of relations, �, is closed under amajority function, then C� is tractable. We shall here prove a slightly moregeneral result, which concerns the class of functions known as near-unanimityfunctions.De�nition 4.7 ([3]) A near-unanimity function of arity n is a function �such that, for all x1; : : : xn where at least n� 1 of the xi are equal to x�(x1; : : : xn) = x(Note that a majority function is a near-unanimity function of arity 3.)There is a remarkably close connection between near-unanimity functionsand consistency properties, as the next result indicates.Theorem 4.8 For any set of relations �, the following are equivalent:� Every relation in � is closed under a near-unanimity function of arityn, 28



� Every constraint satisfaction problem in C� that is strong n-consistentis globally consistent.Proof: This result follows from a classical result of universal algebra con-cerning near-unanimity functions, obtained by Baker and Pixley [3]. Thisresult states that every algebra in a variety contains a near-unanimity func-tion of arity n amongst its term operations if and only if all subalgebras ofproduct algebras in that variety are uniquely determined by their (n�1)-aryprojections [3].Now let � be a �xed set of relations over D, and let P be any constraintsatisfaction problem in C�. To apply the above result, we note that the setSol(P) may be seen as a subalgebra of a direct product of algebras of theform (D;Fun(�)). In fact, by Theorem 10 of [8], every possible subalgebracan be obtained as the projection of Sol(P), for some P.Hence, by the result of Baker and Pixley, Sol(P) is determined by its(n� 1)-ary projections, which means that if P is strong n-consistent, then itis globally consistent. Conversely, if this property holds for every P in C�,then Fun(�) must contain a near-unanimity function.We can use this result to show that when � is closed under a near-unanimityfunction, then the whole of C� is tractable.Corollary 4.9 If � is closed under a near-unanimity function, then the classof problems C� is tractable.Proof: As we remarked earlier, any problem can be made strong n-consistent,for any �xed n, in polynomial time [10]. The new constraints introducedby this process can be obtained from the original constraints by some se-quence of join and projection operations, so they are all closed under thenear-unanimity function. Now applying Theorem 4.8 to the set of constraintrelations in the strong n-consistent problem gives the result.We also remark that Theorem 4.8 indicates that if the constraint relationsin any problem are all closed under some near-unanimity function of arity n,then any level of consistency can be achieved without increasing the arity ofthe constraints beyond n� 1.A similar result to Theorem 4.8 is given in [17], although the connectionwith consistency is not made explicit. (The full version of [17] also givesan interesting characterisation of closure under near-unanimity functions interms of the language Datalog, which is widely-used to specify relations.)29



4.4 A�ne functionsIf the relations in � are closed under an a�ne function, thenC� is tractable [28,17]. To establish this result in the general case requires sophisticated group-theoretic techniques, which are beyond the scope of this report. (The proofrelies on showing that any relation closed under an a�ne function is a cosetof a product group of an Abelian group with universe D.)In the special case when the domain contains a prime number of elementsthe situation is much simpler. In this case, any relation which is closed underan a�ne function must be of the following form [27]:f(x1; x2; : : : ; xr) 2 Zrp j rXi=1 aixi �= ag for some a; a1; a2; : : : ; ar 2 Zp:Thus, any constraint satisfaction problem over a prime domain size d, withconstraint relations that are closed under an a�ne operation, corresponds toa set of simultaneous linear equations over the integers modulo d. Such a setof equations can be solved in polynomial time using a standard technique oflinear algebra, such as Gaussian elimination.4.5 Idempotent binary functionsWhen � is closed under a binary idempotent function, �, it is possible forC� to be either tractable, or NP-complete, depending on the precise natureof the function �.At present, no criterion is known which will distinguish between these twopossibilities in the general case. However, in two special cases it is possibleto be more speci�c about the complexity of C�.4.5.1 ACI functionsBinary functions may be any combination of the following:� idempotent (i.e. �(d; d) = d, for all d 2 D);� commutative (i.e. �(d1; d2) = �(d2; d1), for all d1; d2 2 D);� associative (i.e. �(d1; �(d2; d3)) = �(�(d1; d2); d3), for all d1; d2; d3 2D).A binary idempotent function which is both associative and commutative isknown as an ACI function. The complexity of constraint satisfaction prob-lems in which the constraint relations are closed under ACI functions was�rst investigated in [30]. 30



Theorem 4.10 ([27, 28]) If � is closed under a binary idempotent functionwhich is associative and commutative, then C� is tractable.Example 4.11 The constraint programming language CHIP[45] incorpo-rates constraint solving techniques for certain arithmetical constraints. Inparticular, it includes e�cient algorithms for constraints over the naturalnumbers of the following forms:� domain constraints, which are unary constraints which restrict the val-ues of individual variables to some �nite set ; and� arithmetic constraints, which have one of the following 4 forms:{ aX 6= b,{ aX = bY + c,{ aX � bY + c,{ aX � bY + c,where upper case letters represent variables, lower case letters representpositive constants, and a is non-zero.All of these constraints are closed under the ACI function max, which yieldsthe arithmetic maximum of its two arguments, and hence are tractable bythe result above. Further, the following constraints (listed in[30]) are alsoclosed under this ACI function, and could therefore be added to the CHIPsystem without compromising the e�ciency of the system.� a1X1 + a2X2 + : : : arXr � bY + c,� aX1X2 : : :Xr � bY + c,� (a1X1 � b1) _ (a2X2 � b2) : : : _ (arXr � br) _ (aY � b), 2To clarify the structure of relations which are closed under an ACI function,we �rst describe the close connection between ACI functions and orderingsof the domain. Given an ACI function, �, on a set D, we can de�ne a partialorder, v, on D by setting:d1 v d2  ! t(d1; d2) = d2In this partial ordering the least upper bound of d1 and d2 is given by�(d1; d2). 31



Because any ACI function is � calculates a least upper bound, or max-imum, of its arguments, relative to this ordering, constraints in which theconstraint relation is closed under an ACI function were called max-closedconstraints in [30]8. One possible algorithm for solving problems in which theconstraint relations are closed under an ACI function works as follows [30].First, establish what is called pairwise consistency, by repeatedly forming thejoin of every pair of constraints and projecting the result onto the originalscopes, until there are no further changes in the constraints. Now, for eachvariable v, set D(v) = \f�fvgRi(Si) j v 2 SigEach variable v now has an associated domain of values D(v), such thatd 2 D(v) if and only if the projection of every constraint onto v containsd. These sets D(v) are still closed under the same ACI function (becausethey are obtained from the original constraints by a sequence of join andprojection operations). If any set D(v) is empty, then the problem has nosolution. If all D(v) are non-empty, then assigning the least upper bound ofthe set D(v) to the variable v gives a solution to the problem.4.5.2 Rectangular band functionsA rectangular band function [33] is an associative, idempotent, binary func-tion �, such that �(d1; �(d2; d3)) = �(d1; d3) for all d1; d2; d3 2 D.We will now show that closure under a rectangular band function is nota su�cient condition for tractability. We do this by giving an example9 ofan NP-complete problem class in which the constraint relations are all closedunder a rectangular band function.Example 4.12 Let S and T be sets, with S = fs1; s2; : : : ; skg, letD = S�T ,and consider the following binary relation over D:R = fhhs; ti; hs0; t0ii 2 (S � T )2 j (s 6= s0)gNote that this relation is closed under the rectangular band function, �0, onS � T , de�ned by �0(hs; ti; hs0; t0i) = hs; t0i.We will now show that CfRg is NP-complete, by showing that the k-Colorability problem [22], can be reduced to CfRg in polynomial time.Let P be an instance of the k-Colorability problem, speci�ed by agraph (V;E), where E = fe1; e2; : : : ; eng. Now consider the problem P 0 =8Actually, in [30] the order v was required to be a total order, but the results are stillvalid when the order is a partial order, as shown in [27]9This example was suggested by Marc Gyssens.32



(V;D;R(e1); R(e2); : : : ; R(en)), in which the constraint scopes correspond tothe edges of E, and the constraint relation in each constraint is the relationR de�ned above. Any solution to P 0 can be transformed into a solution toP by mapping values of the form hsi; tji to i. Conversely, any solution to Pcan be transformed into a solution of P 0 by simply assigning hsi; ti to v ifv = i, for some t 2 T . These transforms can be carried out in polynomialtime, so the result follows. 2It is known from general algebraic results [33] that for any rectangular bandfunction � : D2 ! D, the algebra (D; �) is isomorphic to the algebra (S �T; �0) for some sets S and T , where �0(hs; ti; hs0; t0i) = hs; t0i, as in theexample above. Hence, by Theorem 4.4, C� is NP-complete for any � whichis only closed under a rectangular band function, but a proof of this requiresmore theoretical machinery than is presented here (see [25]).4.6 SemiprojectionsWe will now show that closure under a semiprojection is not a su�cient con-dition for tractability. To do this we give an example of an NP-completeproblem class in which the constraint relations are closed under all semipro-jections.Example 4.13 Consider the set, �3, of relations over f0; 1; 2g, de�ned asfollows. �3 = ff0; 1g3 � ftg j t 2 f0; 1g3gThe set �3 contains 23 relations, where each relation contains all 3-tuplesover f0; 1g except for one.Now consider any constraint satisfaction problem P in C�3 . We shallshow that each constraint in P can be seen as expressing a Boolean dis-junction. For example, a constraint with scope hv1; v2; v3i, and relationff0; 1g n h1; 0; 1ig allows any combination of the values 0 and 1 for v1; v2; v3except for v1 = 1; v2 = 0; v3 = 1. This can be expressed by the Booleanformula :(v1^:v2^v3) = v1_v2_:v3. Conversely, any Boolean disjunctioninvolving 3 distinct variables is satis�ed by any combination of Boolean val-ues for those variables except one, so it can be expressed with a relation from�3. Hence, there is a polynomial time reduction from the 3-Satisfiabilityproblem [36], which is NP-complete, to C�3 . This establishes that C�3 isNP-complete.However, every relation in �3 only involves 2 distinct values, 0 and 1, soit is easy to show that it is closed under every semiprojection on the domainof P, which was actually set to be f0; 1; 2g. 233



Theorem 4.4 can be used to show that C� is NP-complete for any � whichis only closed under semiprojections, but a proof of this requires more theo-retical machinery than is presented here (see [25]).4.7 Essentially unary functionsWe will now show that closure under an essentially unary function is nota su�cient condition for tractability. To do this we give an example of anNP-complete problem class in which the constraint relations are closed underall essentially unary functions.Example 4.14 Consider the relation, N over f0; 1g, de�ned as follows:N = fh0; 0; 1i; h0; 1; 0i; h1; 0; 0i; h1; 1; 0i; h1; 0; 1i; h0; 1; 1ig:The class of constraint satisfaction problems CfNg is equivalent to the Not-All-Equal satisfiability problem [38, 22], which is NP-complete.However, N is closed under every essentially unary function on f0; 1g(the only non-constant unary functions on this set are the identity function,and the function which exchanges the two values, and both of these leave Nunchanged). 2Theorem 4.4 can be used to show that C� is NP-complete for any � whichis only closed under essentially unary functions, but a proof of this requiresmore theoretical machinery than is presented here (see [25]).4.8 Summary of results for closure functionsThe results about closure functions and tractability presented above are sum-marised in the following theorem.Theorem 4.15 ([28])� If Fun(�) contains a constant function, then C� is tractable.� If Fun(�) contains a function, �, of arity 2 that is associative, commu-tative, and idempotent, then C� is tractable.� If Fun(�) contains a majority function, then C� is tractable.� If Fun(�) contains an a�ne function, then C� is tractable.� If Fun(�) contains only semiprojections, then C� is NP-complete.34



� If Fun(�) contains only essentially unary operations, then C� is NP-complete.This powerful result means that in order to determine whether C� is atractable class of problems, we simply need to calculate the closure func-tions of �. These closure functions are themselves precisely the solutionsto certain constraint satisfaction problems in C�, which are called indicatorproblems [29, 28]. (There is one indicator problem for each arity of closurefunction.) For more discussion and examples of the use of indicator problemsto establish tractability, see [29].4.9 Other restricted constraint typesIn the preceding sections, we have examined each of the possible forms ofclosure function identi�ed in Theorem 4.5. It follows from Theorem 4.4 thatwe have therefore covered every possible way in which placing restrictions onthe constraint relations alone can ensure tractability.On the other hand, if we impose other conditions on the problems as well,then it is possible to obtain tractable classes of problems which do not fallinto any of the categories discussed earlier. One example of a result of thistype was obtained by van Beek [42], and later extended by van Beek andDechter [44]. It concerns a class of relations known as row-convex relations.De�nition 4.16 A binary relation, R, over an ordered set D is row-convexif, for all d; d1; d2; d3 2 D such that d1 < d2 < d3 the following implicationholds: hd; d1i 2 R and hd; d3i 2 R) hd; d2i 2 R(Note that if D only contains 2 elements, then the condition is satis�edvacuously, so any constraint over a 2-valued domain is row-convex.)Theorem 4.17 ([42, 44]) If � is a set of binary relations such that everyrelation in � is row-convex, then any strong 3-consistent problem in C� isglobally consistent.(Extensions of this result to non-binary constraints are given in [44].)If P is a constraint satisfaction problem in C� which is not strong 3-consistent, then it can be modi�ed to make it strong 3-consistent, as describedearlier, but doing so may introduce new constraints which are not row-convex.(In fact, Theorem 4.8 indicates that a collection of row-convex constraintrelations will always give rise to relations which are not row-convex, on someproblems, unless they are all closed under some majority function.)35



Even if the constraints in a problem are not row-convex for one particulardomain ordering, it is sometimes possible to �nd another ordering such thatthey are. It is shown in [44] that if such a re-ordering exists, then it can becalculated in polynomial time.5 Tractability due to local propertiesIn this section, we consider results which relate local properties of a constraintsatisfaction problem to global properties, such as the existence of a solution,or the possibility of backtrack-free search.First, we examine the result given by Dechter in [11], which relates thearity of the constraints, the size of the domain, and the level of consistencythat is required to ensure global consistency.Theorem 5.1 ([11]) Let P be a constraint satisfaction problem with domainsize d, and let r be the length of the largest scope in P.If P is strong d(r � 1) + 1 consistent, then it is globally consistent.It is clear that any problem which is globally consistent may be solved ef-�ciently by a backtrack-free search. Furthermore, it was stated above thatany problem can be made k-consistent for any �xed value of k in polynomialtime. In view of Theorem 5.1, it might therefore seem that it would be su�-cient to achieve d(r�1)+1 consistency, and then solve the resulting problemin a backtrack-free way. Hence, at �rst sight, this result appears to implythat all constraint satisfaction problems can be solved e�ciently!Unfortunately, this is not the case, because achieving (d(r � 1) + 1)-consistency will, in general, introduce higher arity constraints into the prob-lem, which increases the value of r, and hence requires an even higher levelof consistency. However, in certain special cases it is possible to achieve therequired level of consistency without increasing the value of r (see, for ex-ample, Section 4.3) . In these cases, Theorem 5.1 is su�cient to establishtractability.In general, Theorem 5.1 provides a surprising link between a local propertyand a global property. It says, in e�ect, that if all subproblems up to a certainsize are easily solved, then the whole problem is easily solved.Another result of this kind may be obtained by an application of a well-known result in combinatorial theory, which is usually referred to as theLovasz Local Lemma [15].Theorem 5.2 Let P be a constraint satisfaction problem in which each vari-able occurs in at most t constraint scopes, the length of the largest constraint36



scope is r, and the proportion of assignments allowed by each constraint re-lation is at least p.If p > 1 � 1e(r(t� 1) + 1) ;then P has a solution. (The constant e in the inequality is the base of naturallogarithms, 2:718 : : :.)Proof: The Lovasz Local Lemma [15] states that for any collection ofevents E1; E2; : : : ; En, which each have probability at most p0, if each Ei isindependent of all but at most s of the others, and p0(s + 1) < 1=e, thenwith positive probability none of the Ei occurs.Let R1(S1); R2(S2); : : : ; Rn(Sn) be the constraints of P, and choose somerandom assignment of values to all the variables. Let Ei be the event thatconstraint Ri(Si) is not satis�ed by this assignment, so Ei has probabilityat most 1 � p. Since this constraint overlaps at most r(t � 1) others, Ei isindependent of all but at most r(t � 1) other events. Applying the LovaszLocal Lemma, we conclude that, if (1 � p)(r(t � 1) + 1) < 1=e, then withpositive probability none of the Ei occurs, and hence P has at least onesolution. Rearranging this inequality gives the result.This result guarantees the existence of a solution when certain local condi-tions are satis�ed. However, it is a non-constructive result, which gives noinformation on how a solution may be found.6 Conclusions and Future DirectionsIn this report we have reviewed the current state of knowledge about thecomputational complexity of constraint satisfaction problems.We have shown that tractability can arise in a wide variety of ways:� from the overall structure of a problem;� from properties of the constraint relations; or� from properties of subproblems of bounded size.Strong theoretical results are known for each of these aspects, as describedabove.At present, however, little is known about how these di�erent problemfeatures interact to a�ect the complexity of constraint satisfaction problems.For example, it is possible to construct classes of problems in which the37



problem structure alone does not ensure tractability, and nor does the natureof the constraint relations alone, but the combination of these properties doesensure tractability, as the following example indicates.Example 6.1 Consider the class of binary constraint satisfaction problemswhich have n variables and m values, and which require that each variableis assigned a di�erent value from each other variable. (These problems aresometimes referred to as `pigeon-hole' problems)10.This class of problems is tractable because a solution can be found, ordiscovered to be impossible, by simply assigning a new value to each variablein turn, for as long as there are new values available.However, we note two interesting features of this class of problems:� Since there is a constraint between each pair of variables, the graphassociated with each problem in this class is a complete graph on nvariables.This class of graphs is not su�ciently restricted to ensure tractabilityregardless of the constraints, since any binary constraint problem isequivalent to a problem which is associated with a complete graph. Wecan construct this equivalent problem simply by adding a constraint oneach unconstrained pair of variables which allows any pair of values.� Since the constraints require variables to take di�erent values, the onlyconstraint relation used is the binary disequality relation on m values.This relation does not, in general, ensure tractability, since it can beused to construct arbitrary instances of the Graph Colorabilityproblem, which is well-known to be NP-complete [36]. 2In many cases of practical interest, such as the frequency assignmentproblem, it seems from experimental evidence that many of the problemsarising in practice can be solved very e�ciently, using simple heuristic algo-rithms [14]. However, it is currently di�cult to identify properties of theseproblems which ensure tractability, so each case must be investigated ex-perimentally, without any guarantee of success. By further developing thetheory of tractability described in this report, it may be possible to identifysome combination of properties concerning the structure of such problems,10This class of problems is not completely trivial. When n is greater than m there areclearly no solutions, but many constraint programming languages are unable to discoverthis fact (without additional guidance) in a reasonable amount of time, even for moderatevalues of n and m (say, 15-20). 38
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