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Linguistic Description of Relative Positions in Images
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Abstract—Fuzzy set methods have been used to model and
manage uncertainty in various aspects of image processing, pat-
tern recognition, and computer vision. High-level computer vision
applications hold a great potential for fuzzy set theory because
of its links to natural language. Linguistic scene description, a
language-based interpretation of regions and their relationships,
is one such application that is starting to bear the fruits of fuzzy
set theoretic involvement. In this paper, we are expanding on two
earlier endeavors. We introduce new families of fuzzy directional
relations that rely on the computation of histograms of forces.
These families preserve important relative position properties.
They provide inputs to a fuzzy rule base that produces logical
linguistic descriptions along with assessments as to the validity of
the descriptions. Each linguistic output uses hedges from a dictio-
nary of about 30 adverbs and other terms that can be tailored to
individual users. Excellent results from several synthetic and real
image examples show the applicability of this approach.

Index Terms—Force histograms, fuzzy logic, linguistic descrip-
tions, relative positions, scene understanding, spatial relations.

I. INTRODUCTION

DESCRIPTION of natural scenes is one of the most im-
portant tasks in an image understanding system. Over the

years, it has received considerable attention. The ACRONYM
system by Brooks [1] was an early approach to model-based
image understanding that identified object instances in the
image by matching from a picture graph and an observability
graph. Constraint networks [2], [3] have been used to identify
where objects might be located in a scene. Andress and Kak
[4] used the Dempster-Shafer belief framework to interpret
images from knowledge consisting of line drawings of the
expected scene. Walkeret al. [5] developed a system for
reasoning about lines, planes, and polygons in two and three
dimensions. This work was extended to incorporate fuzzy set
theoretic operations to control perceptual grouping of primitive
elements [6]. Antony described an object oriented database
management system to support spatial and temporal reasoning
[7]. He constructed a framework within which spatial, temporal
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and hierarchical scene reasoning can take place, although no
actual imagery was analyzed. He discussed the use of fuzzy
set theory for expressing constraints such as “near,” and used
quadtree representations to determine (crisp) areas of an image
that would correspond to spatial concepts like “northeast.” In
[8], Medasani and Krishnapuram described a fuzzy approach to
content-based image retrieval that can handle linguistic queries
involving region labels, attribute values, and spatial relations.

Given the importance of spatial relations in the description
of a scene, many methods have been created to define them for
digital image objects. Winston [9] was interested in quantifying
spatial relations to create a program that could learn to recognize
line drawing representations of structures by building an ab-
stract representation of a given line drawing and examining the
applicability of various internalized structure descriptions. He
used rules to generate descriptions for line drawings of three-di-
mensional (3-D) scenes. These descriptions were crisp and con-
text sensitive by nature. The relations involved wereABOVE,
SUPPORTS, IN-FRONT-OF, LEFT, RIGHT, andMARRIES. A few years
later, Freeman [10] proposed that the relative position of objects
be described in terms of 13 primitive spatial relations: 1)LEFT

OF, 2) RIGHT OF, 3) ABOVE, 4) BELOW, 5) BEHIND, 6) IN FRONT

OF, 7) BESIDE, 8) NEAR, 9) FAR, 10) TOUCHING, 11) BETWEEN,
12) INSIDE, and 13)OUTSIDE. The first six are called the primi-
tive directional relations. While humans seem capable of ascer-
taining them, they are exceedingly difficult to define precisely.
“All-or-nothing” standard mathematical relations are clearly not
suitable, and Freeman proposed that fuzzy relations be used.
However, computers have not been able to effectively model
these vital spatial concepts. For instance, many authors assimi-
lated two-dimensional (2-D) objects to very elementary entities
such as a point (centroid) or a (bounding) rectangle [11]–[14].
The procedure is practical, but cannot be hoped to give a satis-
factory modeling.

By introducing the notion of the histogram of angles, Miya-
jima and Ralescu [15] developed the idea that the relative posi-
tion between two objects can have a representation of its own
and can thus be described in terms other than spatial relation-
ships. Actually, angle histograms have generally been used to
assess directional relations [15]–[18]. In [19], Keller and Wang
presented a fuzzy rule-based approach for linguistic scene de-
scription, where directional relationship values were generated
from neural networks fed by angle histograms. These networks
were trained on aggregate responses from a panel of people
[18], and the spatial relationship values were combined with
other world knowledge encoded in fuzzy logic rules to produce
a final linguistic analysis. However, the “language” used in [19]
was very coarse, additional metric features were needed, and
the methods of generating the basic spatial relation member-
ship functions did not satisfy certain “reasonable” criteria, such
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Fig. 1. Computation ofF (�). It is the scalar resultant of forces (black
arrows). Each one tends to moveB in direction�.

as the semantic inverse principle [10]. Better descriptive termi-
nology needs to be created and matched to the spatial relation-
ship definitions, particularly if the description language is to be
tailored to particular individual experts.

In [20]–[22], Matsakis and Wendling introduced the notion
of the histogram of forces. It generalizes and supersedes that
of the histogram of angles. It ensures rapid processing of raster
data as well as of vector data, and of crisp objects as well as
of fuzzy objects. It offers solid theoretical guarantees, and al-
lows explicit and variable accounting of metric information. We
briefly present this notion in Section II, and in Section III we de-
scribe new families of fuzzy directional relations relying on the
computation of force histograms. These families are interfaced
with a set of fuzzy rules to generate linguistic descriptions of
relative positions, as explained in Section IV. The descriptions
contain a richer language than that found in [19]. We tune our
system from a group of simple images, and we demonstrate it
in Section V on a large number of synthetic images as well as
Laser Radar (LADAR) range images of a complex power plant
scene.

II. F-HISTOGRAMS

We represent the relative position of a 2-D objectwith re-
gard to another object by a function from into .
For any direction , the value is the total weight of the
arguments that can be found in order to support the proposition
“ is in direction of .” More precisely, it is the scalar resul-
tant of elementary forces. These forces are exerted by the points
of on those of , and each tends to move in direction
(Fig. 1). If is defined on , i.e., if for any the scalar
resultant is finite, then the pair is termed -as-
sessableand is called thehistogram of forces associated
with via , or the -histogram associated with .
The object is theargument, and the object thereferent. Note
that in the figures throughout this paper, the referent is always
drawn darker than the argument.

Actually, the letter denotes a numerical function. Letbe
a real. If the elementary forces are in inverse ratio to, where

represents the distance between the points considered, then
is denoted by . For any , any pair of disjoint objects is
-assessable. The -histogram (histogram of constant forces)

and -histogram (histogram of gravitational forces) have very
different and very interesting characteristics as shown in Fig. 2.
The former provides a global view of the situation. It considers
the closest parts and the farthest parts of the objects equally,
whereas the -histogram focuses on the closest parts. Details
can be found in [20]–[22].

(a)

(b)

Fig. 2. Main characteristics of theF andF -histograms. (a) Independence
from distance (F -histograms): the force exerted byK on L is equal to the
force exerted byI onJ . (b) Independence from scale (F -histograms): the force
exerted byK onL is equal to the force exerted byI onJ .

(a) (b) (c)

Fig. 3. No existing family of directional relations fits with this perception of
the world: (a)A is perfectly to the right ofB, (b)C is more to the right ofD
than above it, and (c)E is more aboveF than to the right of it.

III. N EW FAMILIES OF FUZZY DIRECTIONAL RELATIONS

A. The Why

The linguistic descriptions generated in Section V make use
of spatial prepositions related to the four primitive directional
relationships: “to the right of,” “above,” “to the left of,” and
“below.” Many families of fuzzy directional relations rely
on the construction of angle histograms [15]–[18]. Some do
not [23]–[25]. The former can be advantageously redefined
using histograms of constant forces [20], [26]. This stems from
the fact that -histograms coincide with angle histograms
[20]–[22], but without their weaknesses (anisotropy, require-
ment for raster data, etc.) However, none of the above families
fits with the set of descriptions presented in Fig. 3. We could
argue whether the “natural” perception illustrated by this figure
is the most intuitive, but it is one possible perception, and we
will use it for our discussion. Many families of directional
relations consider that the objectis not perfectly to the right
of the object (one may wonder when such an event occurs).
Others consider that is more above than to the right of it.
No one is able to reconcile the two last descriptions, because
no one really takes metric information into account. Moreover,
an object is often assessed to be in many directions with respect
to another: both to the right and somewhat to the left, and/or
both above and a little below. This feature is questionable. It
runs counter to the fact that, generally, people do not combine
more than two spatial prepositions when translating visual
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(a) (b) (c)

Fig. 4. Directional relations cannot substitute for the spatial relation
“surround”. (a)A is surrounded byB. (b) A surroundsB. (c) A is included
in B. In each case, according to the existing families of directional relations,
objectA is somewhat above, below, to the right and to the left of objectB as
well. It does not mean thatA surroundsB.

information into natural language descriptions [27], [28] . Some
authors [15], [23] support the idea that it allows more complex
relationships—like “surround”—to be derived. For instance,
knowing that an object is somewhat above, below, to the
right, and to the left of an object as well, one could conclude
that surrounds . In our opinion, drawing such a conclusion
is not reasonable (see Fig. 4). The directional relations are
not the only spatial relations [10], and they cannot represent
the relative position of an object with regard to another all by
themselves. In particular, they cannot substitute for the spatial
relation “surround.”

B. The How

The previous analysis leads us to introduce alternative fami-
lies of fuzzy directional relations. These families will be used in
Section V to generate the linguistic descriptions of relative posi-
tions. They stem from a new way to exploit the force histograms.
The idea is to impose physical considerations on the histograms.
The broad outline of the method has been given in [29], and we
now present it in detail. The French-speaking reader is also in-
vited to consult [26] (or [20]), in which it is shown that the new
families satisfy the four basic axiomatic properties [21], [22]:

1) two objects can be assimilated to points if they are distant
enough;

2) the directional relations are not sensitive to scale changes;
3) neither a space dimension nor a direction are preferred;
4) the semantic inverse [10] principle is respected (e.g., ob-

ject is to the left of object as much as is to the right
of ).

Let be a real and an -assessable pair of objects.
Our goal is to assess the degree of truth of a proposition like “
is in direction of ,” where represents any angle. In this sec-
tion, we will only consider the proposition “is in direction 0 of

,” i.e. “ is to the right of .” For another value of , you can
simply perform the computations described below on the shifted
histogram . The forces exerted on can be classi-
fied in different types. First, the set of directions is divided into
four quadrants, as shown in Fig. 5. The forces of the
outer quadrants ( or ) are elements
which, to various degrees, weaken the proposition “is to the
right of .” The forces of the inner quadrants ( or

) are elements which support the proposition. Some
forces of the third quadrant are used to compensate—as much
as possible—the contradictory forces of the fourth one. The pro-
portion of these compensatory forces is defined by an angle,
to which we will return in Section III-C. Forces of the second

(a)

(b)

Fig. 5. Contradictory(CTF ), compensatory(CPF ) and effective(EF )
forces. (a) The set of directions is divided into four quadrants. (b)� is chosen
such that the 2-D material system depicted above is balanced. The percentage of
the effective forces is denotedb (RIGHT ) :b (RIGHT) = EF=(CTF +
CPF + EF ).

quadrant are used in a similar way to compensate the contradic-
tory forces of the first one. The amount of these compensatory
forces is defined by . The remaining forces are called the ef-
fective forces.

Thanks to this first classification, the new families of direc-
tional relations will not run counter to the fact that, generally,
people do not combine more than two spatial prepositions when
translating visual information into natural language descrip-
tions. In Fig. 6, for instance, the object is not considered to
the right of, above and below object as well, but only to the
right of it. When assessing the degree of truth of “is above

,” the contradictory and compensatory forces cancel each
other out, and the proposition is found completely false. The
same applies to “ is below .”

Now, as shown in Fig. 7, a thresholdis employed to divide
the effective forces into optimal and suboptimal components.
The optimal components support the idea thatis “perfectly”
to the right of : whatever their direction, they are regarded as
horizontal and pointing to the right. The “average” direction

of the effective forces is then computed, in
conformity with this agreement. We will return to and

in Section III-C. Due to the distinction between
optimal and suboptimal components, the new families of
directional relations will be able to fit with the linguistic
descriptions given in Fig. 3(b) and (c), and to ensure a coherent
and continuous handling of intermediate configurations. Fig. 8
depicts the complete classification of the forces exerted on the
reference object.

Finally, the degree of truth of “ is to the right
of ” is set to
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(a) (b) (c)

(d) (e)

Fig. 6. According to the new families of directional relations, an object cannot be both to the right and to the left of another, or both above and below. (a) What
is the relative position ofA with regard toB? (b) All forces are either contradictory or compensatory. “A is aboveB” is completely false. (c) All forces are
either contradictory or compensatory. “A is belowB” is completely false. (d) All forces are effective and the histogram is symmetric. “A is to the right ofB” is
completely true. (e) All forces are contradictory. “A is to the left ofB” is completely false.

(a) (b)

Fig. 7. Optimal and suboptimal components. (a)� divides the effective forces into optimal and suboptimal components. (b)� (RIGHT ) is such that the 2-D
material system depicted above is balanced. The area of the light gray weight in (b) is equal to the area of the light gray region in (a).

In this expression, denotes the percentage of the
effective forces (Fig. 5). Here, is the membership function
of a fuzzy set on that can be employed to define a
family of fuzzy directional relations between points [22].
In our experiments, we used the typical triangular function
graphed in Fig. 9(a). Let us note that the most optimistic point
of view consists in saying that any effective force is optimal.
Then, is always equal to 0, and
is 1. The value therefore corresponds to the
maximum degree of truth that can reasonably be attached to
the proposition “ is to the right of .”

C. Computation of the Different Variables

On an oriented straight line, a material point
is defined by its abscissa (location), and its mass

(weight). The barycenter of a discrete weighted
system like , or , is the material point

. The value of the angle is

the element of such that

corresponds—as far as possible—to the barycenter of the
system . The physical interpreta-
tion of is illustrated by Fig. 5(b). The barycenter of

is

Therefore, should be chosen such that

i.e., it should be chosen such that

The integral is greater than or equal
to 0. However, is not necessarily less
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(a)

(b)

Fig. 8. Forces exerted on the referent can be classified in four types:
contradictory forces, compensatory forces, optimal effective forces and
suboptimal effective forces. (a) Gray dotted arrows: contradictory forces. Black
dotted arrows: compensatory forces. Black continuous arrows: effective forces.
(b) Gray arrows: suboptimal components of the effective forces. Black arrows:
optimal components.

(a) (b)

Fig. 9. Example of directional relations between points. (a) A typical fuzzy
set. (b) IsA in direction� of B? The degree of truth of the proposition “A is
in direction� of B” is �(� � �).

(a)

(b)

Fig. 10. Directional sensitivity given to theF -histograms is characterized by
a functionS. (a) An example of weighting functionS. (b) Analogy with the
design features of a microphone. Note that the upper horizontal segment in (a)
corresponds to an arc in (b).

than or equal to 0, which means that the previous equation may
not have any solution. In that case (no solution), all the forces
of the third and second quadrants should be used to compensate
the contradictory forces of the fourth one (no effective forces).
Finally, a rigorous definition of can be expressed as follows:

Choose so that

if

then

if then

In a similar way:

Choose so that

if

then

if then

Hence, as in Fig. 5, the value of is given by the
following.

If then

if then

If there are no effective forces, i.e., if is equal
to zero, then is also equal to zero, and the value of

is of no importance. Otherwise, is

chosen such that corresponds
to the barycenter of the following weighted system, which de-
pends on the threshold:

The only element of the first set (left operand of the union)
expresses that the optimal components of the histogram are as-
similated to a unique force applied at point zero. The subop-
timal components appear in the second set. The physical in-
terpretation of is illustrated by Fig. 7(b). Hence,

is equal to

The threshold can be any nonnegative real number. Let us
now explain how to choose it. Let and be respec-
tively the minimum and the maximum of the effective forces
(on ). The value of is 0 if or

, or is otherwise. The value
of is . If is chosen lower than or
equal to , there are no optimal components. Then, the ab-
solute value of is maximum, and is
minimum (i.e., no choice of can result in a lower value). If
is greater than or equal to , there are no suboptimal compo-
nents, is equal to zero, and is max-
imum (i.e., equal to ). Setting to the average—or
a weighted average—of the effective forces constitutes a natural
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TABLE I
THE EFFECT OF THETHRESHOLD� ON THE ASSESSMENT OF THEDIRECTIONAL RELATIONSHIPS. (a)A WITH REGARD TOB. (b)C WITH REGARD TOD. (c)E

WITH REGARD TOF . THE CONSIDEREDPAIRS OF OBJECTS, (A;B), (C;D), AND (E;F ), ARE THOSEREPRESENTED BYFIG. 3. THE DIRECTIONAL RELATIONS

“TO THE RIGHT OF” AND “A BOVE” ARE ASSESSEDUSING TWO HISTOGRAMS(THE F -HISTOGRAM AND THEF -HISTOGRAM), AND FOUR THRESHOLDS: THE

MINIMUM OF THEEFFECTIVE FORCES(� ), THE MAXIMUM (� ), THE AVERAGE(� ), AND THE WEIGHTED AVERAGE � WHERES DENOTES THEFUNCTION

GRAPHED IN FIG. 10(a). NOTE THAT IN EACH CASEa (LEFT ), a (LEFT ), a (BELOW ), AND a (BELOW ) ARE EQUAL TO ZERO

(a) (b) (c)

compromise. This is why we setto the ratio , defined as fol-
lows:

The weighting function , from into , is
even, continuous, decreasing on , and takes the value
1 at zero. characterizes the “directional sensitivity” that is
given to the -histograms. Fig. 10(a) shows the trapezoid
function used in our experiments, while Fig. 10(b) shows how
an analogy with the design features of a microphone, which
picks up more or less the lateral sounds, can be established.
The chosen function corresponds to a medium directional
sensitivity, whereas —the function that associates 1 to any
value—corresponds to a large sensitivity (a sound engineer
would say “omnidirectional” instead of “large”). Note that
is the average of the effective forces. Table I illustrates how the
choice of impacts the assessment of the directional relation-
ships. The table refers to the objects represented in Fig. 3. Four
thresholds are considered. The weighted averageallows all
the linguistic descriptions given in Fig. 3 to be accommodated.
Moreover, the values obtained express the “clearest” opinions
(the absolute differences and

are systematically higher when
using this threshold). Finally, applying to the -histogram
allows to be assessed perfectly to the right of. We will
exploit these features in the next sections.

D. Examples

In this section, five families of directional spatial relations
are considered:K, M, W, F0, andF2. The first,K, M, andW,
are based on the construction of angle histograms:K is defined
by the aggregation method [17],M by the compatibility method
[15], andW by the neural approach [18]. The second,F0andF2,
are based on the construction of and -histograms, and the
distinction between contradictory, compensatory and effective
forces, as described above. Our aim here is to show through a
few examples that, contrary to the existing families,F0 andF2
do have the properties we were looking for in Section III-A.
Note thatK andM are probably the most typical families that:

1) involve fuzzy relations and not “all-or-nothing” ones;
2) do not assimilate objects to very elementary entities such

as a point (centroid) or a (bounding) rectangle;

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 11. Comparison between five families of directional relations. Images.
ArgumentA is in white and referentB in gray.

3) fairly meet the basic axiomatic properties mentioned in
Section III-B.

Therefore, likeF0 andF2, they can be hoped to constitute a
satisfactory modeling of the directional relationships.W is used
by the system for linguistic scene description introduced in [19].
We will come back to that system in Section V-B.

Fig. 11 presents nine pairs of objects. For each pair ,
the propositions “ is to theRIGHT of ”, “ isABOVE ”, “ is
to theLEFT of ” and “ is BELOW ” have been assessed. The
degrees of truth produced byK, M, W, F0, andF2 are displayed
in Table II. First, we give some specific comments concerning
the different configurations. If is not perfectly below in the
case depicted by Fig. 11(c), when does this event occur? The
fact is that according toK, M, and W a proposition such as
“ is below ” is never totally true.K andM see the “house”
of Fig. 11(e) (object ) rather south of the “river” (object ),
or maybe north, but certainly not west.W sees the house rather
west, but the values produced are very low. In Fig. 11(b),F2 and
W are alone in thinking that is more to the right of , even
though they give a certain credit to the proposition “is above

”. In Fig. 11(d), as becomes longer,K andM quickly affirm
that is essentially located to the right of. F0 eventually
shares this point of view, but later on, and in a less definite way.
W is uncertain, and gives the lowest degrees of truth.F2 is the
only family to maintain that essentially remains below .
Now, according toM , object of Fig. 11(g) is not much more
to the left of object than below or above it, and is not
much more to the left of in image (g) than in (i). Finally, in
Fig. 11(i), we ask if the ring is located to the left of the disc.F0
andF2 definitely say no. The families of directional relations
cannot substitute for the spatial relation “surround.”W behaves
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TABLE II
COMPARISONBETWEENFIVE FAMILIES OF DIRECTIONAL RELATIONS: RESULTS. THE DEGREES OFTRUTH ARE GIVEN IN HUNDREDTHS

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

strangely, and gives values that do not reflect the symmetry of
the configuration.

Now, let us discuss the most distinguishing feature between
K, M, andW on the one hand, andF0 andF2 on the other. Con-
sider for instance the objects depicted in Fig. 11(h). Through a
point of (the disc), draw a vertical line. The right half-plane
so defined contains some points of(in white). ForK, M, and
W, it is enough to conclude that the proposition “is to the right
of ” cannot be totally false. TheF0 andF2 families are much
more exacting. According to them, an object cannot be simulta-
neously a bit to the left, and a bit to the right of another. Which
family provides the “best” results? The answer obviously de-
pends on context and the application considered. We just dealt
here with what Gapp [30] called thebasic meaningsof spatial
relations (the model proposed by Gapp to define the seman-
tics of spatial relations distinguishescontext-specific conceptual
knowledgefrom thebasic meaningsof the relations). However,
the new familiesF0 andF2 express opinions which are fully
logical. As expected, and contrary toK, M, andW, they fit with
the perception illustrated by Fig. 3, and do not assess an object
to be in more than two primitive directions with respect to an-
other.

IV. GENERATION OFLINGUISTIC DESCRIPTIONS

Now, we want to give a linguistic description of the relative
position between any 2-D objects and . The description
proposed in the present paper relies on the sole primitive
directional relationships: “to the right of,” “above,” “to the left
of,” and “below.” It is generated from and . Other
histograms could have been considered. However, as observed
in Sections II and III-A: 1) -histograms coincide with angle
histograms, which have been extensively used in the literature;
2) gravitational forces are a reality of our physical world; and
3) the and -histograms have very different and interesting
characteristics, which complement one another and allow for
geometric interpretation. First, eight values are extracted from
the analysis of and . These values, computed as in
Section III, are: , , ,

, , , , and
. They represent the “opinion” given by the con-

sidered family (familyF0 if is 0, family F2 if is 2). Then,

Fig. 12. Combination ofF0 andF2’s opinions. Objects. (a) The argument is
M , and the referent isN . (b) The argument isP , and the referent isQ.

TABLE III
COMBINATION OF F0 AND F2’S OPINIONS: RESULTS

(a)

(b)

the two opinions—16 values—are combined. Four numeric
and two symbolic features result from this combination. They
feed a system of fuzzy rules that finally outputs the expected
description.
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(a) (b)

(c) (d)

Fig. 13. Rule base. (a) Primary direction(9 rules + 2 meta-rules). (b) Secondary direction(4 rules + 2 meta-rules). (c) Compound direction
(3 rules+ 4 meta-rules). (d) Self-assessment (three rules).

Fig. 14. Training configurations and terminology (I). Primary, secondary, and
compound directions. In each case, the self-assessment of the description is:
“The description issatisfactory.”

(a) (b) (c)

Fig. 15. Training configurations and terminology (II). Secondary direction.
Shifting. (a)A is perfectlyto theright of B. (b)A is perfectlyto theright of
B, butslightlyshiftedupward. (c)A is perfectlyto theright of B, butstrongly
shifted upward. In each case, the self-assessment of the description is: “The
description issatisfactory.”

A. Input Variables

Let be the set of the four 2-D primitive directions:
. Consider an ele-

ment of . A degree of truth has to be attached to the
proposition “ is in direction of .” We work on the principle
that , the value proposed byF0, is never too optimistic,
but is often too cautious. We attribute the previous drawback to
the fact thatF0 only has a global view of the situation, and we
correct it consideringF2, which focuses on the closest parts of

the objects. However, just because of this characteristic,F2’s
opinion may be excessive: sometimes excessively pessimistic,
and sometimes excessively optimistic. We will use the exam-
ples presented in Fig. 12 and Table III to illustrateF0 andF2’s
behavior. There are actually three cases.

1) (which is equivalent to:
)

According toF0, the value is the maximum de-
gree of truth that can reasonably be attached to the propo-
sition “ is in direction of ”. Therefore,F2 conflicts
with F0. The value may be too cautious, but
seems excessively optimistic. We choose a compromise
solution and set: . For instance, as shown in
Fig. 12(b) and Table III-B,F2 assesses to be somewhat
to the right of : . The reason is
that is actually to the right of the closest part of. F0,
which examines the configuration from a global point of
view, findsF2’s opinion inordinate. It considers that, rea-
sonably, “ is to the right of ” cannot be but completely
false: . We supportF0’s analysis and
set to zero.

2) (which implies that: ).
According toF2, the value is the maximum de-

gree of truth that can reasonably be attached to the propo-
sition “ is in direction of .” Therefore,F0 conflicts
with F2. We ignore the excessive pessimism ofF2 and
set: . Let us take again the example with

and . F0 estimates at 0.80 the degree of truth of “
is above ,” whereasF2 considers that it should not ex-
ceed 0.61. This is a severe opinion, due to the fact that the
top-left part of , very close to , eclipses the rest of the
reference object inF2’s analysis.

3) and .
There is no conflict. We set:

. For instance, as
shown in Fig. 12(a) and Table III-A,F2 gives great
credit to the proposition “ is above .”
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Fig. 16. Training configurations and terminology (III). Self-assessment.

(a)

(b)

Fig. 17. Connection between: (a) “butabove” and “but shiftedupward,”
and (b) “belowbut shifted to theright” and “below-right.” In each case, the
self-assessment of the description is: “The description issatisfactory.”

equals 0.83.F0 is more cautious ( equals
0.53), but admits thatF2’s opinion is defensible
( equals 1). Part of is actually right
above some part of . On the other hand, though no part
of is perfectly to the left of , many points of
are mostly to the left of many points of , and F0’s
opinion ( equals 0.81) is also defensible
( equals 0.89). We finally set to

, and to .
It is easy to see that in the three cases:

Moreover, in the first and second cases (conflict):

And in the third one (no conflict):

The value measures to what extent both
sources of information agree on the fact thatcan be consid-
ered in direction of . Finally, six parameters are extracted
from the analysis of the histograms and , and used in
order to generate the linguistic description of the relative posi-
tion between and . These values , , , , , and
are defined as follows:

Here, is the primary direction, and the secondary direc-
tion. The degree of truth attached to the proposition “is
in direction of ” is maximum when is . See the two ex-
amples presented in Fig. 12 and Table III.

B. The Rule Base

A system of 27 fuzzy rules and meta-rules, displayed in
Fig. 13, handles a set of 16 adverbs, and allows precise lin-
guistic descriptions to be produced (such as “is perfectlyto
the right of ,” “ is mostlyto the right of , but somewhat
above”). The symbol -- that appears in Fig. 13 represents
the “void” adverb. For instance, “ is -- to the right of ”
should be read “ is to the right of ,” and can be considered
equivalent to “ is almost perfectlyto the right of .” Finding
appropriate terms to distinguish—in a natural way—between
closely related configurations is sometimes difficult. Moreover,
a given word may be suited for linguistic descriptions of
completely different configurations. This is why, in the rule
base, some adverbs appear more than once. The subscripts will
be used only in this section, for tracking purposes. Note that the
adverbs are stored in a dictionary of terms, and can be tailored
to individual users. Two dictionaries are currently available:
one in English, and one in French. The linguistic values, such
ashigh, medium, low, will be discussed subsequently.

The description of the relative position between two objects
and will generally be composed of three parts. The first

part is the main part of the description (e.g., “is to theright of
”). It involves the primary direction . The second part sup-

plements the description (e.g., “but a littleabove”). It involves
the secondary direction . The third part indicates to what ex-
tent the four primitive directional relationships are suited to de-
scribing the relative position of the objects (e.g., “The descrip-
tion issatisfactory”). In other words, it indicates to what extent
it is necessary to turn or not to other spatial relations (e.g., “sur-
rounds”).

The first part of the description depends on the input vari-
ables , and . It is generated by the set of rules shown in
Fig. 13(a). Let us assume for instance that the primary direction

is RIGHT, and that the two objects and can be assimi-
lated to points. In this case, the configuration is not ambiguous,
there is no possibility of conflict between the two sources of in-
formation and , and is high (actually equal to 1).
However, the object can be “more or less” to the right of.
The primary direction rule base offers three adverbs as candi-
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 18. Linguistic values used in the rule base. (a) Linguistic values form . In our experiments:M = 0:96,M = 0:80,M = 0:20. (b) Linguistic values
for d . In our experiments:D = 0:92,D = 0:75, andD = 0:20. (c) Linguistic values form . In our experiments:M = 0:93, M = 0. (d) Linguistic
values ford . In our experiments:D = 0:25 andD = 0:08. (e) Linguistic values forminfm ;m g. In our experiments:M = 0:95, M = 0:80, and
M = 0:20. (f) Linguistic values ford =d . In our experiments:D = 0:71, D = 0:56, andD = 0:42. (g) Linguistic values formaxfm ;m g. In our
experiments:M = 0:90 andM = 0:50.

dates for a hedge in the main part of the linguistic description.
The adverbsperfectly, -- (void) andmostlyhave been chosen
here. They are presented in sectors 1, 2, and 3 in Fig. 14. The
selection among the three words is made according to, the
degree of truth of the proposition “is to the right of .”

It is clear that the 2-D objects and cannot always be as-
similated to points. The configuration may be ambiguous, and

may not behigh. Depending on the amount of ambiguity,
perfectlydegenerates into --or , -- into or

, etc. Note that if or arelow (very serious con-
flict, very ambiguous configuration), the primary direction is
meaningless. Then, no pertinent linguistic description relying
on the sole primitive directional relationships can be given, and
the system produces the message “???????” This usually hap-
pens when and intersect, or one surrounds the other.

Unless it is equal to the series of question marks, the main
description is likely to be supplemented using the set of rules
shown in Fig. 13(b). Suppose, for instance, that the primary
and secondary directions, and , are, respectively,RIGHT

andABOVE. The supplementary description depends on, ,
and . For high values of , it can be “but (the object
is) a little above (the object )” or “but somewhatabove.” The
two possibilities are shown in sectors 2 and 3 in Fig. 14. The
choice between the competing adverbs is made according to,
the degree of truth of “ is above .” For mediumvalues of

, the possibilities turn into “but (the object is) slightly
shifted upward (relative to )” and “but strongly shifted up-
ward.” The signification of these expressions—which could not
be obtained without the contribution of the histogram of gravita-
tional forces—is illustrated by Fig. 15. The connection between
the two kinds of expressions (“but… above,” “but… shifted up-
ward”) is illustrated by Fig. 17(a). Note that if or arelow,

the secondary direction is meaningless, and the main description
is not supplemented [see sector 1 in Fig. 14 and Fig. 15(a)].

Unless the message “???????” is to be generated, the two first
parts of the description may be combined, using one of the four
compound directions:ABOVE-RIGHT, ABOVE-LEFT, BELOW-LEFT

andBELOW-RIGHT. This happens according to the rules shown
in Fig. 13(c). Look at sectors 2, 3, and 4 in Fig. 14. The two
sources of information agree thatcan be considered both to
the right of and above (i.e., is high). However,
only in sector 4 the degree of truth of “is above ” can actu-
ally be compared to the degree of truth of “is to the right of

” (i.e., only in sector 4 the ratio is very high). Now, look
at Fig. 19(a). Whatever the argument, is very high. How-
ever, most configurations are ambiguous, and only argument 5
makes high. The connections between 1-piece
descriptions (such as “ is above-right of ”) and two-piece
descriptions are illustrated in sectors 3 and 4 in Fig . 14 and Fig.
17(b).

Finally, if a pertinent linguistic description relying on the
sole primitive directional relations can be given (i.e., except for
“???????”), then the description assesses itself using the last
set of rules shown in Fig. 13(d). The description issatisfactory
when there is at least one direction that wins both sources of
information over (i.e., when is high). This is il-
lustrated by Fig. 16.

C. Linguistic Values

Each linguistic value used in the rule base (likehigh, medium,
low) corresponds to a fuzzy set whose membership function
is represented by a trapezoid. The trapezoid is symmetrical (un-
less truncated), and chosen so that the core is half the support.
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(a)

(b)

Fig. 19. Two series of tests on synthetic data.

Therefore, is completely determined by one or two parame-
ters: the values of such that . All the membership
functions are depicted in Fig. 18. The different parameters,
to and to , have been set considering typical config-
urations such as those in Figs. 14–16. Most of the valuesto

result from precise computations, the others have been deter-
mined empirically. We refer to this tuning process as the training
of the system. for instance [Fig. 18(b)] has been deduced
from the sequence of configurations represented by Fig. 14 and
involving point-like objects. In each case, is high (equal to
1). The parameter , related to ’s linguistic valueshighand
medium-high, therefore determines when the void adverb --is
preferred toperfectly[Fig. 13(a)]. It has been naturally set to

, where is the membership function graphed in Fig. 9,
and the angle common to sectors 1 and 2 in Fig. 14. In
other words, is the degree of truth of the proposition “point

is to the right of point ,” when is in fact exactly in direc-
tion of . Most of the values to have been deduced
from such geometric observations, considering nonambiguous
configurations. for example, which is related to ’s lin-
guistic valueshigh andmedium[Fig. 18(d)], determines when

somewhatis preferred toa little [Fig. 13(b)] and has been set to
. It is the degree of truth of “point is above

point ,” when is actually in direction of (the direc-
tion common to sectors 2 and 3). In a similar way,[Fig. 13(c)
and Fig. 18(f)] has been set to . The
numerator is the degree of truth of the proposition “pointis
above point ,” when is actually in direction of ,
and the denominator is the degree of truth of “is to the right
of .”

In the description of the relative position between point-like
objects, each adverb is selected among a few other candi-
dates, and the selection rules are determined by, , etc.,
through the linguistic values. When the objects cannot be
assimilated to points, the set of candidates depends on the
amount of ambiguity. For a “low” ambiguity (Fig. 13(a),
is high), the adverb in the main description is picked from

-- . For a “medium” ambiguity (
is medium-high), it is picked from --
instead. The parameter (Fig. 18(a)) thus determines when
the second set of candidates is preferred to the first one. The
decision, of course, is rather subjective. That is why, contrary to

, , etc., the parameters to have all been assessed
empirically, according to our own intuition. For example,

and [Fig. 18(g)] have been chosen considering the
sequence of configurations represented by Fig. 16.

It is clear that the linguistic values can be tailored—like the
dictionary of terms—to individual users. In particular, a coarser
language can be easily obtained by choosing a smaller set of
adverbs, fewer linguistic values, and fewer rules (e.g., the set
of rules shown in Fig. 13(b) can be ignored if no supplementary
description is desired). A fuzzy rule base is a natural mechanism
to allow users to remove, add and test new adverbs, rules, and
membership distributions.

V. EXPERIMENTAL RESULTS

A. Synthetic Data

Many results on synthetic data have already been presented
in Section IV (see Figs. 14–17). Fig. 19 shows two more series
of configurations, which have not been used in the training stage
for the determination of the linguistic values. Other series can be
found in [29]. In fact, all these data are part of an animation that
we built to evaluate our system. Structured round 35 key config-
urations, it is made up of more than two thousand images, and
lasts about three and a half minutes. Six short movies supple-
ment the electronic version of the paper and cover a large part of
the animation: the first movie, MATSA01.AVI, can be related to
Fig. 17(a); MATSA02.AVI is a variant that involves intersecting
objects; MATSA03.AVI is linked to Fig. 3, Fig. 11(c) and (d),
and Fig. 17(b); MATSA04.AVI shows the series of configura-
tions presented by Fig. 19(b), and MATSA05.AVI shows the se-
ries presented by Fig. 19(a); the last movie, MATSA06.AVI, is
related to Fig. 4, Fig. 11(g)–(i), and Fig. 16. Note that the six
video clips use a pseudo-polar representation of the histograms,
more expressive than the Cartesian one (Fig. 20). An example
of a frame is shown and described in Fig. 21.
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Fig. 20. From Cartesian to pseudo-polar histogram representation: I. Rotate. II. Turn. III. Wrap.

Fig. 21. Sample frame to understand the movies that supplement the electronic version of the paper.

B. Real Data

In our experiments on real data, we used two images
provided by the Naval Air Warfare Center (Fig. 22). These
images are LADAR (Laser Radar) range images [31] of the
power-plant at China Lake, CA. They were processed by ap-
plying first a median filter, and then the pseudo-intensity filter

, where and are the Sobel gradient
magnitudes in a window. Finally, the filtered images were
segmented and labeled manually. Wang and Keller used the
same real data to test a fuzzy rule-based approach for linguistic
scene description [19]. Below, their system is referred to as the
WK system, and the system introduced in the present paper is
referred to as theMK system. Figs. 23 and 24 show the 24 pairs
of objects (or groups of objects) that have been considered in
our experiments. For each pair, the results from bothWK and
MK are displayed in Tables IV and V.

Before examining the results, let us describe brieflyWK . The
system accepts 373 input variables. Eleven inputs are related to
some geometric features (e.g., areas of the objects, distance be-
tween them) and 181 come from the angle histogram defined as
in [15]. The remaining 181 are from a second histogram that re-
quires the computation, for each pointof the reference object,
of the angle made by the two tangents fromto the argument
object. The first 192 inputs feed four neural networks fused with

the Choquet fuzzy integral, and trained on aggregate responses
from a panel of people. The results are the degrees of truth of
“ is to the right of ,” “ is above ,” “ is to the left of ,”
and “ is below .” The 181 remaining inputs feed a multilayer
perceptron that produces the degree of truth of “surrounds ”
(again, trained by the human panel responses). Finally, the five
outputs of the neural networks are used as the inputs of a fuzzy
rule base containing 242 rules. TheWK system is able to gen-
erate ten different linguistic descriptions. Eight are related to the
primitive and compound directions: “is to the right of ,” “
is above-right of ,” “ is above ,” “ is above-left of ,”
“ is to the left of ,” “ is below-left of ,” “ is below ,”
and “ is below-right of .” The two others are “ surrounds

” and “ is among .” No self-assessment is provided.
MK has not been given the ability to recognize the last two

relationships. However, its vocabulary is much richer. Exam-
ination of Tables IV and V shows that this richness is gener-
ally very well employed. The outputs of the two systemsWK
andMK can sometimes be found equivalent (in Table IV, com-
pare the results about the objects 2, 3, 7, and 10; in Table V,
compare those about 4, 7, and 9). Nevertheless,MK is often
much more precise thanWK . Consider for instance the object
4 of Fig. 23: the descriptions agree for the most part, butMK
notes that the relationship is not a perfect above-left, and uses
the adverb “loosely” to indicate a bias in one direction. Con-
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(a)

(b)

(c)

(d)

Fig. 22. Real data. (a) LADAR range image NAWC 20675, after filtering. (b) LADAR range image NAWC 20675, after filtering, hand-segmentation and labeling.
(c) LADAR range image NAWC 20695, after filtering. (d) LADAR range image NAWC 20695, after filtering, hand-segmentation and labeling.

Fig. 23. First series of tests on real data. Configurations. For each image, the reference object is in black, and the argument(s) in dark gray. The light gray objects
are ignored.

sider now object 8: the descriptions agree on the primary direc-
tion, butMK points out that the storehouse is slightly shifted
to the left. These expanded vocabulary and increased descrip-
tive ability give toMK a higher resolving power thanWK . For
instance, our system distinguishes between the two configura-
tions with objects 5 and 6 of Fig. 23. Concerning object 5,MK
ignores the “above” relationship, insignificant in distance com-
pared to the “left” relation. Concerning object 6, it expresses that
the tower is more to the left of than above the stackbuildings.

WK does not make any distinction and sees both arguments
above-left. Many other examples can be found in Fig. 24 and
Table V (consider the objects 1 and 2, 3 and 4, and 10 and 11).
We also point out that, contrary toWK , theMK system guaran-
tees the two following properties: 1) the linguistic descriptions
are not sensitive to scale changes and 2) the semantic inverse
[10] principle is respected. In Fig. 15(b) for instance,MK finds
object perfectly to theright of , but slightly shiftedupward.
Therefore, we can be sure thatwill be found perfectly to the
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Fig. 24. Second series of tests on real data. Configurations. For each image, the reference object is in black, and the argument(s) in dark gray. The light gray
objects are ignored.

TABLE IV
FIRST SERIES OFTESTS ONREAL DATA: RESULTS. WK IS THE SYSTEM INTRODUCED IN [19], AND MK THE SYSTEM DEFINED IN THE PRESENTPAPER

left of , but slightly shifteddownward. This explains why the
term “shifted” has been preferred to “extends.” One could say
that “ is perfectly to the right of , butextendsupward”. How-
ever, “ is perfectly to the left of , butextendsdownward” is
obviously incorrect. Remember thatMK does not use any in-
formation (area, compactness, etc.) about an individual object.

Although theMK system globally performs very well, some
results are not totally satisfactory. Dealing with a language as

rich asMK ’s is tricky (it is always easier to be right when vague
and imprecise). For instance,MK affirms that the stackbuilding
1 of Fig. 23 is perfectly to the right of the referent, but it also de-
scribes—and this piece of information is questionable—a sec-
ondary direction, “upward.” The relation exists because of the
top left corner of the argument, which is nearly above the bottom
right corner of the referent. This minute detail is caught due to
the -histogram’s local view. The least satisfactory description



MATSAKIS et al.: LINGUISTIC DESCRIPTION OF RELATIVE POSITIONS IN IMAGES 587

TABLE V
SECONDSERIES OFTESTS ONREAL DATA: RESULTS. WK IS THE SYSTEM INTRODUCED IN [19], AND MK THE SYSTEM DEFINED IN THE PRESENTPAPER

might be the one that concerns the object 6 of Fig. 24. A piece of
the pipe extends between the uppermost and middle stackbuild-
ings. At the end of the extension, the pipe has a strong “down-
ward” relationship with the uppermost building (and a weak
“upward” relationship with the middle one). As a result, theMK
system assesses the argument to be slightly shifted downward
relative to the referent. A similar phenomenon can be observed
with the object 12 of the same figure. However, note that in both
cases,MK itself considers the descriptionrather satisfactory.
Finally, note thatMK produces the message “???????” to de-
scribe the relative position between the pipe 11 and the stack-
buildings of Fig. 23. The output is appropriate, since none of the
directional relationships are relevant. The fact is confirmed by
WK , which has been given the ability to recognize “surrounds.”

VI. CONCLUSION

In this paper, we have examined the issues involved in uti-
lizing consistent spatial relationship information to produce lin-
guistic descriptions of natural scenes. The methodology is based
on histograms of forces that capture essential elements of rela-
tive position with well defined properties. By imposing physical
considerations on the histograms, we have introduced new fam-
ilies of fuzzy directional relations. Our system interfaces these
families with a fuzzy rule base and handles a rich language to de-
scribe the spatial organization of scene regions, as demonstrated
by the many examples shown. The system is even able to provide

a degree of self-assessment concerning the linguistic descrip-
tions. Good intuitive results are displayed for most cases. The
descriptions in general agree with those produced by the Keller
and Wang system for straightforward objects (hence, they are
compatible with the human panel responses). However, in many
cases, they provide better information. Moreover, the fuzzy rule
base in our approach is much smaller, and the computation of
extra geometric features is not needed. In the future, such fea-
tures could be used to improve and refine even more the descrip-
tions. Relations like “surrounds” and “is surrounded by,” “in-
cludes,” and “contains,” could also be incorporated. The ability
to easily adapt the fuzzy rules, their adjectives, and the fuzzy
sets defining the adjective meanings, constitute another possible
area for enhancement. We are currently working on using our
approach to retrieve images and object images given a linguistic
description (by a human or by the system, say, from a different
aspect angle).
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